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Abstract -- The use of an artificial neural
network  to  predict  subjective  human
reactions  to  photographs  is  explored  in
this  paper.   In  particular,  the  neural
network is used to determine the factors
that  distinguish  subjectively  good
photographs  from  subjectively  bad
photographs.   Data  used  for  training
come from the photograph  sharing  web
site Flickr.com, which currently contains
over  100,000,000  photographs  and  a
estimated  social  network  of
approximately 1,000,000 registered users.
The site systematically determines which
photographs  are  the  most  popular  and
have the most appeal to the most users.

I. INTRODUCTION

A  human  being  uses  subjective
reactions, such as personal taste and artistic
appreciation, to judge the overall quality of
an  image.   These  reactions  are
unpredictable  and  depend  largely  on  the
uniqueness of the individual human being
observing  the  image.   However,  some
images  trend  towards  more  universal
acceptance  among  varying  subjective
tastes.  These images are more likely to be
considered  interesting,  artful,  or  high

quality by a larger group of people.  The
social-network-driven web site Flickr.com
has  amassed  over  100,000,000
photographs  from  a  user  base  of
approximately  1,000,000  users.   The
company  that  created  the  site  has
established  a  ranking  system  that
automatically  determines  the
"interestingness" of user-submitted images
in  comparison  with  other  user-submitted
images.   For  an  example  of  this,  see
http://flickr.com/explore/interesting/2005/01/.
These  rankings  are  generally  based  on
objective criteria, such as the frequency of
user  visits  to  specific  images.   Thus,  the
determination  has  already  been  made  of
which  images  have  reached  a  more
universal  acceptance  among  the  varied
tastes  of  the  user  base.   A  computer
algorithm that can use this information to
predict  the  "interestingness"  of  arbitrary
images  has  high potential  in  many areas.
For  example,  advertising  or  marketing
agencies  can  run  stock  graphics  through
such  an  algorithm  to  determine  which
images  are  more likely to  achieve higher
public  acceptance.   A  consumer  digital
image management  product  can  use  such
an algorithm to mine the user's substantial
digital  image  collection  to  filter  out  the
most  interesting  images.   Image  search
engines can rank image results  with such
an algorithm so users are viewing the most
interesting results.  Imaging algorithms or
"computer  art  generators"  can  create
galleries  of  artificially-generated  images
that  have  a  high  probability  of  having
characteristics  that  are  interesting  to
people.

The  mechanism  to  obtain  the
training data from Flickr.com is described
in this paper.  Flickr.com provides a web
services  interfaces  that  enables  software
developers  to  access  the  data  from  the
Flickr.com site.  This paper explores image
data  analysis  techniques  to  determine
which  data  are  useful  as  inputs  for  an
artificial  neural  network  to  make



determinations  on  subjective  image
qualities.   This  paper  also  discusses  the
selection  criteria  for  the  type  of  neural
network  used,  and  how  its  operational
parameters are determined.

II.  SURVEY

Neural  networks  research  in  the
image  analysis  field  is  extensive  and
covers  many  different  areas  of  interest.
The specific problem this paper attempts to
solve appears to be unique.  However there
are several solutions of interest that share
some characteristics that are useful to this
paper.

Ekman  and  Friesen  et  al  utilize
back-propagated  feed-forward  neural
networks  to  train  a  system to  classifying
facial actions and expressions [1].  In their
solution,  several  approaches  individually
produce  useful  results,  and  the
combination of approaches yields a success
rate  of  92%.   Of  interest  therein  is  the
"holistic spatial analysis" which uses gray
level  images  as  training  data  in  a  three-
level neural network with ten hidden units
and six output units.  The network uses a
soft  transfer  function,  and  the  output  is
determined  using  a  winner-take-all
scheme.   Training  is  accomplished  using
conjugate  gradient  descent.   The  other
techniques  used in  the  paper  are  feature-
specific  to  faces,  and  are  not  considered
here, since the problem this author presents
is  not  feature-specific.   However,  the
technique  of  combining  multiple
approaches is  significant to  our ability to
detect  the  interestingness  of  photographs,
as our own judgment of the interestingness
of an image is intuitively suspected to be
based on more than one criteria.

Rowley, Baluja, and Kanade utilize
a "retinally connected" neural  network to
examine  portions  of  images  to  decide  if
they  contain  a  human  face  [2].   Their

system  chooses  among  a  variety  of
networks to improve the performance that
may be limited by using a single network.
Presented in their paper is a challenge that
is relevant to us: for the purpose of training
the  neural  network  to  detect  faces,  it  is
easy  to  get  a  representative  sample  of
images  which  contain  faces,  but  much
harder  to  get  a  representative  sample  of
images  that  do  not  contain  faces.   To
address this, Rowley, Baluja, and Kanade
use  a  technique  of  "bootstrapping"  non-
face images by selectively adding images
to the  training  data  set  as  the  training  is
performed.   Their  use  of  bootstrapping
combined  with  multiple  neural  networks
resulted  in  improved  accuracy.   The
topology  of  the  neural  network  used
reflects  some  general  sense  of  the  facial
features  being  detected.   For  example,  a
group  of  hidden  units  in  the  network  is
arranged in stripes in order to detect mouth
features in the input images.  Similarly, a
group of hidden units arranged in smaller
squares is used to detect eye features.

Gallagher  and  Deacon  present  a
neural  network  used  to  classify
mineralogical samples using x-ray spectra
[3].   Input  data  is  presented  to  several
varieties of neural networks in the form of
histograms representing x-ray spectral data
obtained from minerals analyzed by x-ray
spectral  machines.   A 100% success  rate
was  obtained  via  experiments  using  the
Backprop  and  Quickprop  neural  network
algorithms.  Of interest to this author is the
use  of  histogram spectra  data  to  conduct
the  classification.   One  of  the  factors  in
classifying  the  interestingness  of  a
photograph  is  the  color  distribution.
Experiments herein will represent the color
distributions via histogram data.  

III.  CLASSIFICATION OF POPULAR
IMAGES

In July of 2004, the site Flickr.com



began ranking user-submitted photographs
using  a  methodology  of  quantifying  the
measured  user  activity  centered  around
individual images.  Data used to determine
the  popularity  of  a  photograph  include:
measurements  of  user  clickthrough  from
web sites that link to the photograph, the
quantity and creation time of user-supplied
comments, the number of Flickr users that
tag the  photograph as  "favorite",  and the
types  of  tags  used  to  describe  the
photograph.  All of these data are human-
generated,  and  Flickr  generates  a
quantitative  ranking using an undisclosed
algorithm.   With  this  approach,  the
Flickr.com  site  is  able  to  display  a
collection  of  the  most  interesting
photographs as determined by user activity.
Generally  this  results  in  automatically
detecting  interesting,  high  quality
photographs.  Figure 1 shows an example.

Figure  1  -  Flickr.com's  algorithm
determined  that  the  above  were  some of
the  most  interesting  photographs  on
February 1 2006 and February 2 2006.

Flickr  clusters  the  rankings  based
on  the  dates  the  photographs  were
uploaded to the site.  Thus, a photograph
with the top popularity ranking for one day
will have equal popularity ranking with a
photograph with the top popularity ranking
for a different day.  Since the photographs
are ranked using a  quantitative  approach,
there  is  likely  to  be  a  way  to  compare
relative  rankings  between  different  days,
but this is not yet exposed on the Flickr site
or API.  The ranking is obtained from the

Flickr  site  using  the  Flickr  web  services
API.  Flick exposes a remote method call
specifically designed to return photographs
ordered  by the  popularity ranking.   Thus
interestingness  is  quantified based on the
position  each  photograph  appears  in  the
list.   For  the  purposes  of  this  author's
experiments,  photographs  are  limited  to
certain sample areas.  A sampling is taken
from  the  top  of  the  ranked  photographs.
Then, a more sparse sampling is taken for
less popular photographs in order to get a
useful  representation  of  varying levels  of
popularity.  A minimum popularity is also
selected.  The number of top rankings to
sample,  degree  of  sparseness  of
intermediate  ranking  samples,  and
minimum  popularity  threshold  are
variables used in a trial and error approach
during  experimentation.   The  minimum
popularity  threshold  is  used  to  scale  the
output of the neural network to a unipolar
or  bipolar  value.   For  example,  in  the
unipolar  case,  the  value  of  0  represents
lowest popularity, and 1 represents highest
popularity.   Additionally,  categories  of
popularity  are  defined  to  encourage
clustering  during  the  training.   For
example, category 1 is "Very Interesting";
category 2 is "Somewhat Interesting" and
category  3  is  "Not  Interesting."   One
observation  is  that  the  user-based
measurement of a photograph's popularity
may  not  detect  high  quality  photographs
that are currently marked with much lower
popularity  on  Flickr.   This  author  hopes
that  the  general  trend  (higher  rankings
imply  higher  quality  and  lower  rankings
imply lower  quality)  will  outweigh  these
occurrences on average.  

Several forms of input are used to
perform neural network operations for this
classification  problem.   Each  form  is
intended to  isolate  specific  characteristics
of the image data.  This produces a higher
variety of training data that are combined
to generalize the classification results.  One



input form is the original raw photograph
data.  This data is reduced to a 75x75 pixel
size  to  improve  the  performance  of  the
neural  network  simulation.   Experiments
using  higher-resolution  imagery  may  be
performed but will require smaller sample
sets.   This  training  data  attempts  to
approximate a popularity mapping function
based  solely  on  the  pixel  data  that
comprises  the  raw  images.
Experimentation  does  not  rely  solely  on
this  technique  due  to  the  possibility  of
overfitting the  neural  network  during  the
training.   For example,  given a set  of 10
popular  images and 10 unpopular  images
in  the  training  data,  the  neural  network
may accurate in classifying the images, but
only  based  on  detecting  those  specific
images and not any other factors leading to
their popularity.  This observation is  also
dependent on the sample set used.

Another  form  of  input  is  the
histogram  representation  of  color
distribution in the image data.  This form
breaks  down  into  three  categories.   The
first  is  a  simple  RGB  (red/green/blue)
count of the image data.  For example, a
photograph may be comprised of 20% red,
30%  green,  and  50%  blue.   Another
category  is  the  one-dimension  color
distribution histogram.  Each color channel
is  separately  analyzed  into  a  histogram
showing  intensity  versus  channel  value.
Three-dimensional  color  distribution
histogram is another category of histogram
representation.   The  three-dimensional
color histogram shows color intensity as a
function of all three of the RGB channels.
However, the three-dimensional histogram
input  has  a  space  cost  of  16,581,375
elements  for  the  full  histogram
representation unless a sparse 3x3 matrix is
used.  The goal behind the color histogram
techniques  is  to  determine  if  the  neural
network  can  predict  popularity  as  a
function of color values.  If successful the
algorithm  will  determine  if  photographs

that contain specific color distributions are
more  likely  to  be  popular  than  other
photographs.

An  important  consideration  in  the
analysis  of  photograph  quality  is  the
luminosity  or  lighting  values  of  the
photograph.   The  luminosity  can  be
approximated by conversion of the original
photograph  into  a  gray  scale
representation.   The  RGB color  channels
will  thus  be  equalized  (monochromatic)
and  a  histogram  analysis  will  express
luminosity , or light intensities, rather than
color  distribution.   Using  these  data  in
training will determine if it is possible for a
neural network to predict popularity based
on light intensities.  Specific distributions
of  lighting  values  may  increase  the
probability of high photograph popularity.

Another  input  form  is  the  use  of
texture  analysis  via  gray  level  co-
occurrence  matrices.   Co-occurrence
matrices  are  used  to  compute  several
factors used to quantify texture properties
[4,  5].   These properties include: contrast
(or  intertia),  energy,  entropy,
symmetricalness,  correlation,  dissimilary,
and  homogeneity  (or  inverse  difference
moment)  [6].   Quantifications  of  these
properties  are  used  to  express  spatial
relationships,  tone  and  structure  of  an
image.  The texture-based approach to the
training set includes both the examination
of  input  data  resulting  from  texture
analysis,  as  well  as  the  inclusion  of  the
entire  co-occurrence  matrix  on  scaled
images or image subsets.  Experimentation
will explore the effect of using solely the
matrix-derived  properties  above  versus
allowing the neural network to derive new
properties  based  on  the  co-occurence
matrix and the desired popularity rankings.

IV.  EXPERIMENTAL METHODOLOGY

Obtaining Photographs



The first step was to obtain the raw
image  data  set  from  Flickr  used  for
training.   Flickr  makes  available  a  web-
based  API  for  directly  accessing  their
exposed services.  To simplify the activity
of accessing this API, experiments herein
used  flickrj,  a free  Java-based  wrapper
around the Flickr API.  Flickr
organizes  popular  photographs  by  date.
Three  experimental  sets  of  photographs
were obtained and are described below.

Four  main  experiments  are
conducted.  The first experiment performs
neural  network  training  against  a  sample
data  set  of  559  images  obtained  from
Flickr.com.  These images are categorized
into  three  distinct  categories.   The  first
category,  "Very  Interesting",  consists  of
photographs whose popularity ranking falls
within  to  top  25.   Nine  different  sample
days  are  used.   The  sample  days  are:
August 9, 2004 through August 12, 2004
inclusive,  and  August  15,  2005  through
August 19, 2005 inclusive.  This category
contains  of  221  distinct  photographs.
Figure  2  depicts  the  top  25  photographs
from one of the nine sample days.

Figure 2: Top 25 Flickr.com photographs
from August 11, 2004.  These photographs
are in the "Very Interesting" category.

The  second  category,  "Somewhat
Interesting", consists of photographs whose
popularity ranking falls within the top 300
and 500,  inclusive.   These  samples  were
taken  from  the  same  nine  days.   This
category  consists  of  88  photographs.
Figure  3  depicts  11  photographs  in  this
category from one of the nine sample days.

Figure  3:   Eleven  sample  photographs
from the "Somewhat Interesting" category.

The  final  category,  "Not  Interesting",
consists of photographs that do not fall in
the  popularity  ranking  system  on
Flickr.com.   At the time these experiments
were  conducted,  Flick.com  limited  its
popularity  rankings  to  500  selected
photographs  per  day.   Once  the  500
photographs are ranked for a given day, the
remaining  photographs  are  considered
unranked, and thus "not interesting".  This
category  contains  250  images  for  the
network  training.   Figure  4  depicts  a
sample of photographs from this category.



Figure  4:  Thirty-six  sample  photographs
from the "Not Interesting" category.  

The  second  experiment  uses  the
neural  networks  trained  in  the  first
experiment to attempt to predict popularity
clusters  for  another  image  data  set  with
known popularity rankings.   The data set
contains  2381  images  sampled  from  67
different days.  The sample days are: July
1,  2004 through July 31,  2004 inclusive,
August 1, 2004 through August 12, 2004
inclusive, August 5, 2005 through August
28, 2005 inclusive, and April 2, 2006.  The
popularity  categories  are  known  in
advance.  The "Very Interesting" category
contains  1373  samples.   The  "Somewhat
Interesting" category contains 557 samples.
The  "Not  Interesting"  category  contains
451 samples.   Figures 5,  6,  and 7 depict
samples from these categories.

Figure  5:  Twenty-five  "Very  Interesting"
photographs from August 15, 2005.

Figure  6:  Twenty-five  "Somewhat
Interesting"  photographs  from August  15
through 17, 2005.



Figure  7:  Twenty-five  "Uninteresting"
photographs in the test set for the second
experiment.

The third experiment  runs a sample
set of 250 photographs through the neural
networks  trained  in  the  first  experiment.
These  photographs  have  an  unknown
popularity  ranking.   Additionally,  they
were all very recently uploaded by users to
the  Flickr  web  site  at  the  time  of  the
experiment.  Figure 8 depicts a sampling of
these photographs.

Figure  8:  Twenty-five  photographs  from
the  250  images  used  in  the  third
experiment.

The  fourth  experiment  uses  the
trained neural networks to attempt to locate

interesting photographs from this  author's
collection  of  photographs.   A sample  set
size of 2912 was used.

Processing Photographs Into Input Data

For each experiment, every photo is
processed  to  produce  a  set  of  image
metadata used as input data for the neural
networks.  The neural network topologies
are described in a separate section below.
The types of input data used are as follows:

● Raw  pixel  data,  RGB,  10-by-10
pixels

● Raw pixel data, Gray scale, 20-by-20
pixels

● One-dimensional  color  histogram,
RGB

● One-dimensional  color  histogram,
Gray scale

● Color percentages, RGB
● Color percentages, Gray scale
● Texture metadata

Practical  limitations  of  neural
network topologies  reduce the amount  of
information  that  can  feasibly  by  used  as
input data.  Thus, in the case of raw pixel
data,  the  original  images  must  be  down
sampled into smaller  images.   Flickr.com
provides  multiple  downloads  for  each
photograph.   The  medium  and  small
downloads  are  used  for  this  paper's
experiments.  The medium image size has
a  maximum  width  and  height  of  500
pixels.  The small image size has a width
of 75 pixels  and height  of  75 pixels.   A
side effect of these formats is that the small
image size is not truly representative of the
medium  image  size,  because  the  small
image  size  has  an  aspect  ratio  of  1:1,
whereas the medium image size can have
any aspect  ratio,  with  the  constraint  that
neither  the  image  height  nor  width  may
exceed 500 pixels.   Thus,  the use of  the
small image size as input often results in a
very  loose  approximation  of  the  original



image.  Further, for network training, the
full  75-by-75  raw  pixel  data  produces  a
very  large  input  vector.   For  gray  scale
image  data,  the  input  vector  has  a
magnitude of 5,625.  For RGB image data,
we require three output channels each with
a magnitude of 5,625, thus the input vector
has a total magnitude of 16,875.  For these
reasons the input data is further reduced to
image sizes of 10x10 for RGB images, and
20x20 for gray scale images.  Input vectors
for  RGB  and  gray  scale  then  have  a
magnitude of 300 and 400, respectively.
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Figure 9:  Sample input  vector  for 10x10
RGB raw pixel data.
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Figure 10: Sample input vector for 20x20
gray scale raw pixel data.

The  raw  input  data  is  scale-
dependent  and  position  dependent,  which
limits  the ability to  analyze input  images
and compare them to other images.  Thus
we  conduct  color  analysis.    Histogram
computations  are  performed  on  the  color
distributions of the input images.  Again an
input data size concern arises when using
color histogram data.  In the case of three-
dimensional  color  histogram  data  in  the
RGB  color  model,  every  combination  of

red,  green,  and  blue  values  must  be
included in color counts.  Since there are
256 possible color intensities in each of the
RGB  channels,  the  total  number  of
combinations of colors is 16,777,216.  This
is  impractical  for  the  neural  network
learning  algorithms.   To  reduce  the
magnitude  of  the  input  vector  for  color
analysis, color metadata is limited to one-
dimensional  histograms  and  color
percentage  counts.   In  the  case  of  one-
dimension  histograms for  full-color  RGB
analysis, the input vector consists of three
channels, each containing 256 entries, for a
total magnitude of 768 inputs.  In the case
of  one-dimensional  histograms  for  gray
scale analysis, the input vector consists of
only  one  channel.   In  the  case  of  color
percentage counts, the image color data is
split  into  eight  regions.   Each  region  is
designated  by  color  name:  black,  blue,
green,  cyan,  red,  magenta,  yellow,  and
white.   A  color  counting  procedure
determines  the  percentages  of  the  image
color  data  for  each  color  category.   The
color  percentages  provide a  rough sketch
of the scale-invariant color distributions in
the input image.
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Figure  11:  Sample input  vector  for  gray
scale, one-dimensional histogram data.

0.30002847  0.24680583  7.324219E-4  0.18839519  0.033996582  1.4241536E-4
0.018941244 0.21095784

Figure 12: Sample input vector for color
counts of an RGB image.

The  last  input  vector  used  for
neural  network  training  is  texture-related
metadata.  The follow quantitative data [5,
6] are computed for each input image:

● Contrast



● Correlation (also called Intertia)
● Dissimilarity
● Energy
● Entropy
● Homogeneity
● Correlation Matrix Sum
● Symmetry

For RGB images, the above values
are computed for  each of  the three color
channels,  resulting  in  an  input  vector
magnitude of 24.

90926626  0.9999999999999951  3970046  1112022826  4708818.221576486
281642.73953644  748250  1  83762742  0.9999999999999989  3827710  892331760
4661049.616140028 286428.5259828772 748250 1 83712860 0.9999999999999941
3901552 527959020 4309677.930229572 280554.7784524056 748250 1

Figure 13: Sample input vector for texture
analysis of three-channel RGB image.

Each  of  the  inputs  required  for
network  training  is  obtained  by use  of  a
free  Java  image processing  library called
JIU.   JIU  computes  color  and  light
intensity  histograms,  performs  image
transformations,  and  performs  texture
analysis.   ImageMagick,  a  free  image
processing utility, is used to convert input
images into gray scale images to be used to
represent luminosity. Experiments  are
conducted on input files generated by JIU
and ImageMagick.  

Once  accurate  training  results  are
established  for  the  input  vector  types
decribed above, they are tested against the
unknown data set  of photographs.  These
photographs are obtained from other dates
showing  popularity  rankings  on  Flickr.
These photographs are not in the original
training data set.  They are associated with
a  popularity  category  based  on  the
quantified  popularity  ranking  on  Flickr,
thus an error rate is directly computed from
the experimentation.  The trained networks
are then applied to sets of photographs that
do  not  have  popularity  measures.   Thus,
experimental results can only be elaborated
using subjective measures.

The results of the accuracy obtained
from the experiments above is analyzed to
pick  out  which  attempts  can  be  used
together as a combined approach to predict
the  popularity  of  unknown  photographs.
These  experimental  results  give  insight
into a direction for further experimentation
to  improve  the  success  rate  of  these
techniques.

Neural Network Architecture

Initial experiments were conducted
on  feed-forward  networks  using  several
back-propagation  algorithms.   Further
experimentation  resulted  in  a  stronger
focus  on  the  use  of  counter-propagation
algorithms  for  training.   These  neural
networks  were  simulated  using  Joone
(Java  Object  Oriented  Neural  Engine)
and JavaNNS, the Java-based successor to
SNNS  (Stuttgart  Neural  Network
Simulator).  

Joone  is  a  neural  network
framework  designed  to  aid  researchers,
professional  users  and  enthusiasts  in
creating,  training and testing a  variety of
neural  networks  [8].   It  supports  both
supervised  and  unsupervised  learning,  as
well  as  modular  (hybrid)  networks.   The
supervised learning algorithms it supports
are  feed-forward,  recursive,  time  delay,
standard  back-prop,  and  resilient  back-
prop.   The  unsupervised  learning
algorithms it supports are Kohonen SOMs
and  Principal  Component  Analysis.   The
Joone  package  features  modular
components used to build and implement a
large variety of network designs.  

JavaNNS provides a robust toolset
of neural  network training algorithms  for
simulating  a  large  number  of  types  of
neural  network  configurations  [7].
Because  it  is  based  on  SNNS,  JavaNNS
supports  a  higher  number  of  training
algorithms  and  network  configurations
than  Joone.   Initial  experimentation  was
conducted  using  Joone,  and  final



experimental  results  were  created  using
JavaNNS.

V. EXPERIMENTAL RESULTS

Joone: Backpropagation Training

Initial experiments were conducted
in Joone using feed forward networks
employing backpropagation training
algorithms.  The input data described in the
previous section was used to train these
networks.  Outputs were defined as a
unipolar scaled representation of the
quantified ranking.  A value of 0 represents
the lowest popularity rating.  A value of 1
represents the highest popularity rating.
Seven networks were created,
corresponding to each of the image
metadata categories.  These experiments
resulted in high error rates using the input
data described in the previous section.
This was due to the difficulty in
determining the number of hidden layers,
and number of neurons per hidden layer
that would result in successfully trained
networks.  Also, the high dimensionality of
the inputs and high number of input
patterns contributed to the difficulty during
training.  This path of experimentation was
abandoned in favor of pursing Kohonen
unsupervised training and counter-
propagation network (CPN) training in
JavaNNS.  CPN was quicker to train and
more straightforward to implement.

Joone Kohonen Unsupervised Training

Exploratory  experimentation  was
conducted  in  Joone  using  the  Kohonen
unsupervised  training  algorithm  on  the
texture metadata of 559 input images with
known popularity rankings.   Twenty-four
input  nodes  were  used,  and  five  winner-
take-all  output  nodes  were  used.   This
number  of  output  nodes  was  selected
arbitrarily  to  discover  any  naturally-
forming clusters as a result of the Kohonen

training  technique.   As  a  result  of  the
training, only three clusters formed based
solely  on  the  texture  data.   Figure  14
tabulates the clustering results on the 559
input patterns.

Cluster# # of images # of Very
Interesting

avg
rank

1 37 12 0.36

2 297 125 0.52

3 225 84 0.45
Figure 14: Clustering results on 599 input
patterns.

This result indicates a weak inclination of
cluster #2 to identify a majority of higher-
ranked  samples.   However,  the  average
ranking of the cluster (0.52) indicates this
cluster includes many samples with lower
rank.  Further experimentation, particularly
using  different  numbers  of  output  nodes
and different types of input metadata, may
produce  more  useful  results.   Without
further experimentation,  it  cannot be said
that  cluster  2  will  again  identify  the
majority  of  higher-ranked  samples.   A
Gaussian  output  layer  may  also  be  of
interest to identify trends in the input data.
The  remaining  experiments  herein,
however,  focus  on  CPN  as  it  is  more
successful at creating a "memory" of input
metadata provided by the images used for
training.

JavaNNS Counterpropagation Network

Training  was  performed  in
JavaNNS  using  the  counterpropagation
training  algorithm.   The  network
architecture  consists  of  an  input  layer
containing i nodes, a hidden Kohonen layer
containing  k nodes,  and  an  output  layer
containing two nodes.  Figure 15 illustrates
this architecture.



Figure 15: CPN architecture.

Five  networks  were  successfully  trained.
Each network corresponds to  one of  five
input vector types (raw RGB 10x10 pixel
data, raw gray 20x20  pixel data, RGB 1D
histogram, gray 1D histogram, and texture
metadata).   JavaNNS  could  not  perform
training  on  the  color  percentages  input
vectors.   The  reason  is  unclear;  one
possibility is that there is no good mapping
between  the  8-dimensional  input  vector
and  the  two  bit  output.    Another
possibility  is  misconfiguration  of  the
network and/or input pattern files.  

The input layer size is dependent on
the pattern width of the metadata used as
input  These are tabulated as follows:

● Raw RGB 10x10 pixel data: 300
● Raw gray scale 20x20 pixel data: 400
● RGB 1D histogram: 768
● Gray scale 1D histogram: 256
● Texture: 24

In each case, the hidden Kohonen layer is
set  to  559  nodes,  to  correspond  to  the
number of images in the input set.

The output of the CPN consists of
two nodes whose values represent one of
three states: [0 0] for "Very Interesting", [1
0]  for  "Somewhat  Interesting",  and  [1  1]
for  "Not  Interesting".  The choice of  only
three  categories  was  done  to  reduce  the
computational  overhead  of  larger  neural
networks,  thus  speeding  the  training.
JavaNNS  assigns  random  weights  to  the
network  during  initialization,  rather  than
directly computing the weights needed to
activate  the  appropriate  winner-take-all
neurons in the Kohonen layer.  As a result,
the training performance is very dependent
on the number of nodes in each layer.  

CPN training of the five networks,
each using 559 training patterns,  resulted
in sum-of-squares error below 0.01.  The
2381 patterns belonging to the test data set
with  known  popularity  rankings  were
applied  to  each  of  the  five  trained
networks.   Accuracy  percentages,
calculated  as  number  of  correct  outputs
divided  by  number  of  patterns,  are
tabulated below:

● Texture: 51%
● Raw RGB: 47%
● RGB histogram: 53%
● Gray scale histogram: 51%
● Raw gray scale: 48%

The results  indicate  a  poor  ability of  the
networks  to  strictly  identify  specific
ranking clusters.  The breakdown below of
accuracy  percentages  by  cluster  shows
some improved results:

● Texture, Very Interesting: 50%
● Texture, Somewhat Interesting: 32%
● Texture, Not Interesting: 76%

● Raw RGB, Very Interesting: 46%
● Raw RGB, Somewhat Interesting:

24%
● Raw RGB, Not Interesting: 79%

● RGB histogram, Very Interesting:
46%

● RGB histogram, Somewhat
Interesting: 32%

● RGB histogram, Not Interesting:
80%

● Gray scale histogram, Very
Interesting: 54%

● Gray scale histogram, Somewhat
Interesting: 26%

● Gray scale histogram, Not
Interesting: 75%

● Raw gray scale, Very Interesting:
54%



● Raw gray scale, Somewhat
Interesting: 24%

● Raw gray scale, Not Interesting: 81%

The  results  indicate  a  high  accuracy  in
determining that a given image falls in the
"Not  Interesting"  category.   Further
analysis  indicates  that  in  a  majority  of
cases (70% and higher), the neural network
will  produce  an  output  of  "Very
Interesting"  accurately,  and  the
combination  of  outputs  to  filter  out  false
positives  increases  the  accuracy
significantly, at the expense of  causing the
neural  network  to  overlook  photographs
known  to  be  in  the  "Very  Interesting"
category.   This  analysis  is  tabulated  by
defining  a  threshold.   This  threshold
indicates  how many of the five networks
have  classified  a  given  image  as  "Very
Interesting."  For example, a threshold of
two indicates that at least two of the five
networks have classified an image as "Very
Interesting".   As  this  threshold  increases,
accuracy increases while the total number
of detections of known "Very Interesting"
samples  decreases.   These  results  are
tabulated as follows:

Threshold: 1
● Known "Very Interesting" photographs

detected: 1241
● Percentage  of  total  number  of  known

"Very Interesting" photographs (1373):
90%

● Number  of  false  positive  detections:
577

● Total number of detections: 1818
● Error rate: 32%

Threshold: 2
● Known "Very Interesting" photographs

detected: 988
● Percentage  of  total  number  of  known

"Very Interesting" photographs (1373):
72%

● Number  of  false  positive  detections:
392

● Total number of detections: 1380
● Error rate: 28%

Threshold: 3
● Known "Very Interesting" photographs

detected: 609
● Percentage  of  total  number  of  known

"Very Interesting" photographs (1373):
44%

● Number  of  false  positive  detections:
183

● Total number of detections: 792
● Error rate: 23%

Threshold: 4
● Known "Very Interesting" photographs

detected: 355
● Percentage  of  total  number  of  known

"Very Interesting" photographs (1373):
26%

● Number of false positive detections: 59
● Total number of detections: 414
● Error rate: 14%

Threshold: 5
● Known "Very Interesting" photographs

detected: 247
● Percentage  of  total  number  of  known

"Very Interesting" photographs (1373):
18%

● Number of false positive detections: 8
● Total number of detections: 255
● Error rate: 3%

These results are promising, because they
demonstrate  the  ability  of  the  trained
neural  networks  to  produce  accurate
detections  of  "Very  Interesting"
photographs  when  used  in  conjunction
with a threshold.   However,  many of the
"Very  Interesting"  photographs  are
misclassified as "Somewhat Interesting" or
"Not  Interesting"  when  the  threshold  is
increased.   These  results  are  greatly
improved  by  merging  the  "Somewhat
Interesting"   category  with  the  "Very
Interesting" category.  Thus, the output of
the  neural  network  can  be  simplified  to



classifying  between  images  that  are
"Interesting" or "Not Interesting."  Results
reflecting this merge as as follows:

Threshold: 1
● Known  "Interesting"  photographs

detected: 1859
● Percentage  of  total  number  of  known

"Interesting" photographs (1930): 96%
● Number  of  false  positive  detections:

190
● Total number of detections: 2049
● Error rate: 9%

Threshold: 2
● Known  "Interesting"  photographs

detected: 1604
● Percentage  of  total  number  of  known

"Interesting" photographs (1930): 83%
● Number  of  false  positive  detections:

162
● Total number of detections: 1766
● Error rate: 9%

Threshold: 3
● Known  "Interesting"  photographs

detected: 1211
● Percentage  of  total  number  of  known

"Interesting" photographs (1930): 63%
● Number of false positive detections: 98
● Total number of detections: 1309
● Error rate: 7%

Threshold: 4
● Known  "Interesting"  photographs

detected: 740
● Percentage  of  total  number  of  known

"Interesting" photographs (1930): 38%
● Number of false positive detections: 34
● Total number of detections: 774
● Error rate: 4%

Threshold: 5
● Known  "Interesting"  photographs

detected: 409
● Percentage  of  total  number  of  known

"Interesting" photographs (1930): 21%
● Number of false positive detections: 9

● Total number of detections: 418
● Error rate: 2%

These  results  suggest  that  a  given
image's  similarity  to  an  image  in  the
known "Interesting" group can predict  its
own  membership  to  that  group.   This
similarity  is  measured  in  terms  of  the
counter-propagation network performing a
closest-match  search  of  the  image's
representative  metadata  to  the  input
patterns provided during the training phase.

Subjective Experiments

The  final  experiments  attempt  to
apply the trained CPN from the previous
learning phase to image data sets that are
not  associated  with  quantifications  of
popularity.   The  first  set  of  images  is  a
random sampling of 250 of the most recent
images uploaded to the Flickr web site at
the time of the experiment.  The second set
of  images  is  a  sampling  of  2912
photographs  from  the  author's  personal
collection of digital photographs.

Flickr.com test set results

Input data is generated for the 250
Flickr test images in similar fashion to the
training and verification test sets from the
previous experiments.  With a threshold of
5  (that  is,  all  five  networks  classify  the
image as "Interesting"), only 14 images are
classified  as  "Interesting".   Figure  16
contains the 14 images selected.



Figure  16:  The  14  images  classified  as
"Interesting"  by  all  five  counter-
propagation neural networks.  To see the
large  version  of  these  images,  go  to  the
following URL:
http://oranchak.com/paper/flickr-5/int-5-large.html

With  a  threshold of  4,  more photographs
are classified as "Interesting".  The total for
this  case  is  57  photographs.   They  are
displayed in Figure 17.

Figure  17:  The  57  images  classified  as
"Interesting" by at least four out of five of
the counter-propagation neural networks.
To see the large version of these images,
go to the following URL:
http://oranchak.com/paper/flickr-4/int-4-large.html

Was  this  experiment  successful?   The
question is very subjective and difficult to



measure.  In this author's opinion, most of
the photographs in  both threshold  groups
are  indeed  interesting.   However,  only  a
smaller number of the photographs seem to
share  the  consistently   high  subjective
qualities  that  the  top  ranked photographs
on Flickr.com exhibit.   A better  measure
would be to survey user reaction to test sets
of photographs to measure their  levels of
interest  in  the  photographs.   More
discussion  on  this  topic  is  found  in  the
Discussion section.

Personal photograph test set results

Input data is generated for the 2912
test images from the author's collection of
digital  photographs  in  similar  fashion  to
the training and verification test sets from
the  previous  experiments.   With  a
threshold  of  5  (that  is,  all  five  networks
classify the image as "Interesting"), only 98
images are classified as "Interesting".  Too
numerous to include in this paper, they can
be seen at the following URL:

http://oranchak.com/paper/personal-5/int-5.html

To this author, there is no clear majority of
interesting photographs in this result.  The
networks have indeed selected some very
interesting  photographs,  but  too  many of
the  photographs  are  ordinary  family
photographs  with  little  distinguishing
photographic  quality.   More
experimentation  is  required  to  determine
why  the  networks  have  more  success
classifying interesting images that originate
from the Flickr site.

VI. DISCUSSION

Results  herein  indicate  a  high
degree  of  success  in  training  neural
networks  with  the  counter-propagation
algorithm  to  predict  the  popularity
potential  of  arbitrary  images  from  the
Flickr  web  site.   A great  deal  of  further

refinement  via  expanded  experimentation
is required to improve the technique.  One
limitation  in  the current  technique is  that
despite  good  accuracy  on  predictive
capability  against  Flickr  images  with
known and unknown popularity rankings,
the trained neural networks do not perform
well  against  arbitrary  images  from  the
author's  personal  photograph  collection.
One  potential  problem  is  that  the  input
images were resampled down to the 10x10
and  20x20  pixel  data  sizes  without
preserving the aspect ratio on the images.
Flickr  automatically  crops  all  of  their
images during resizing to preserve aspect
ratio.  A similar process must be applied to
non-Flickr  data  sets  to  have  a  consistent
comparison.   Additionally, the non-Flickr
input data used for histogram and texture
analyses  were  not  resized  to  the  same
relative  scale  of  the  medium-sized
photographs  obtained  from  Flickr.
Possibly, this difference of scale may help
contribute  to  poor  network  accuracy.
Finally,  to  verify the  usage of  the neural
network,  the winner-take-all  nodes of  the
Kohonen  layers  of  the  neural  networks
should be linkable back to the images they
are representing.  In this way, a classified
image  can  be  compared  to  the  training
images that contribute to its classification.
Network parameters can be adjusted based
on this  comparison to  tune the  ability of
the  CPN  to  achieve  the  best  match  to
training  images.   A  user  interface  that
prompts the user with such a comparison
and  accepts  the  user's  "vote"  about
agreement  on the match can significantly
improve the network performance.  

Additional  improvements  to  the
CPN approach in general for this problem
include the following:

● Create input vectors based on texture
analysis of the gray scale version of
the original image data.

● Increase the height/width of the raw
pixel data used as input



● Perform  intelligent  anti-aliasing  of
pixel data to preserve as much image
data  as  possible  while
resizing/downsampling.

● Use  a  hybrid  network  to  improve
accuracy.   For  example,  a  tuning
network could be attached to each of
the  outputs  of  the  five  counter-
propagation networks to improve the
classification of interesting images.

● Split  up  the  texture  input  data  into
multiple networks to try to isolate the
dependencies in the data.

● Include more types of image analysis
metadata as input.

● Explore the use of other node types
as replacements for the winner-take-
all nodes in the Kohonen layer.  For
example,  Gaussian  nodes  may
provide  more  probabilistic
information  related  to  how well  an
pattern  matches  the  network's
memory  of  trained  data.   For
example,  Gaussian  nodes  may
provide  the  ability  to  detect  an
ordered  list  of  best  matches,  rather
than  limiting  the  match  to  exactly
one image.  The Euclidian distances
related  to  multiple  Gaussian  nodes
may provide more information about
how  strongly  an  input  pattern
matches the training data.

● Alter the number of output nodes to
vary the range of values to which the
input patterns are mapped.

Further,  more  exploration  is
required  to  determine  the  effect  on  CPN
training  using  using  scale-  or  position-
dependent  input  data  versus  scale-  or
position-independent  input  data.   These
kinds of data can result in misclassification
by CPN because  a  simple  change  in  the
input  data  can  drastically  change  the
comparison  to  other  image  data  in  the
networks.  For example, raw pixel data is
position and scale dependent.  A one-pixel
offset in an image can completely change

its  computed  distance  from  other  image
patterns in  the CPN.  Further research is
needed  to  improve  the  technique  of
sampling  portions  of  the  input  image  to
account for these effects.
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