
Artificial Neural Network
For Automated Prediction of

Popularity of Digitized
Images

David Oranchak
Roanoke, VA 24018, USA

doranchak@cox.net
Student, Neural Network Design, Dr.

Milos Manic
http://husky.if.uidaho.edu/ee578s06/

Abstract -- The use of an artificial neural
network to predict subjective human
reactions to photographs is explored in
this paper. In particular, the neural
network is used to determine the factors
that distinguish subjectively good
photographs from subjectively bad
photographs. Data used for training
come from the photograph sharing web
site Flickr.com, which currently contains
over 100,000,000 photographs and a
estimated social network of
approximately 1,000,000 registered users.
The site systematically determines which
photographs are the most popular and
have the most appeal to the most users.

I. INTRODUCTION

A human being uses subjective
reactions, such as personal taste and artistic
appreciation, to judge the overall quality of
an image. These reactions are
unpredictable and depend largely on the
uniqueness of the individual human being
observing the image. However, some
images trend towards more universal
acceptance among varying subjective
tastes. These images are more likely to be
considered interesting, artful, or high

quality by a larger group of people. The
social-network-driven web site Flickr.com
has amassed over 100,000,000
photographs from a user base of
approximately 1,000,000 users. The
company that created the site has
established a ranking system that
automatically determines the
"interestingness" of user-submitted images
in comparison with other user-submitted
images. For an example of this, see
http://flickr.com/explore/interesting/2005/01/.
These rankings are generally based on
objective criteria, such as the frequency of
user visits to specific images. Thus, the
determination has already been made of
which images have reached a more
universal acceptance among the varied
tastes of the user base. A computer
algorithm that can use this information to
predict the "interestingness" of arbitrary
images has high potential in many areas.
For example, advertising or marketing
agencies can run stock graphics through
such an algorithm to determine which
images are more likely to achieve higher
public acceptance. A consumer digital
image management product can use such
an algorithm to mine the user's substantial
digital image collection to filter out the
most interesting images. Image search
engines can rank image results with such
an algorithm so users are viewing the most
interesting results. Imaging algorithms or
"computer art generators" can create
galleries of artificially-generated images
that have a high probability of having
characteristics that are interesting to
people.

The mechanism to obtain the
training data from Flickr.com is described
in this paper. Flickr.com provides a web
services interfaces that enables software
developers to access the data from the
Flickr.com site. This paper explores image
data analysis techniques to determine
which data are useful as inputs for an
artificial neural network to make

determinations on subjective image
qualities. This paper also discusses the
selection criteria for the type of neural
network used, and how its operational
parameters are determined.

II. SURVEY

Neural networks research in the
image analysis field is extensive and
covers many different areas of interest.
The specific problem this paper attempts to
solve appears to be unique. However there
are several solutions of interest that share
some characteristics that are useful to this
paper.

Ekman and Friesen et al utilize
back-propagated feed-forward neural
networks to train a system to classifying
facial actions and expressions [1]. In their
solution, several approaches individually
produce useful results, and the
combination of approaches yields a success
rate of 92%. Of interest therein is the
"holistic spatial analysis" which uses gray
level images as training data in a three-
level neural network with ten hidden units
and six output units. The network uses a
soft transfer function, and the output is
determined using a winner-take-all
scheme. Training is accomplished using
conjugate gradient descent. The other
techniques used in the paper are feature-
specific to faces, and are not considered
here, since the problem this author presents
is not feature-specific. However, the
technique of combining multiple
approaches is significant to our ability to
detect the interestingness of photographs,
as our own judgment of the interestingness
of an image is intuitively suspected to be
based on more than one criteria.

Rowley, Baluja, and Kanade utilize
a "retinally connected" neural network to
examine portions of images to decide if
they contain a human face [2]. Their

system chooses among a variety of
networks to improve the performance that
may be limited by using a single network.
Presented in their paper is a challenge that
is relevant to us: for the purpose of training
the neural network to detect faces, it is
easy to get a representative sample of
images which contain faces, but much
harder to get a representative sample of
images that do not contain faces. To
address this, Rowley, Baluja, and Kanade
use a technique of "bootstrapping" non-
face images by selectively adding images
to the training data set as the training is
performed. Their use of bootstrapping
combined with multiple neural networks
resulted in improved accuracy. The
topology of the neural network used
reflects some general sense of the facial
features being detected. For example, a
group of hidden units in the network is
arranged in stripes in order to detect mouth
features in the input images. Similarly, a
group of hidden units arranged in smaller
squares is used to detect eye features.

Gallagher and Deacon present a
neural network used to classify
mineralogical samples using x-ray spectra
[3]. Input data is presented to several
varieties of neural networks in the form of
histograms representing x-ray spectral data
obtained from minerals analyzed by x-ray
spectral machines. A 100% success rate
was obtained via experiments using the
Backprop and Quickprop neural network
algorithms. Of interest to this author is the
use of histogram spectra data to conduct
the classification. One of the factors in
classifying the interestingness of a
photograph is the color distribution.
Experiments herein will represent the color
distributions via histogram data.

III. CLASSIFICATION OF POPULAR
IMAGES

In July of 2004, the site Flickr.com

began ranking user-submitted photographs
using a methodology of quantifying the
measured user activity centered around
individual images. Data used to determine
the popularity of a photograph include:
measurements of user clickthrough from
web sites that link to the photograph, the
quantity and creation time of user-supplied
comments, the number of Flickr users that
tag the photograph as "favorite", and the
types of tags used to describe the
photograph. All of these data are human-
generated, and Flickr generates a
quantitative ranking using an undisclosed
algorithm. With this approach, the
Flickr.com site is able to display a
collection of the most interesting
photographs as determined by user activity.
Generally this results in automatically
detecting interesting, high quality
photographs. Figure 1 shows an example.

Figure 1 - Flickr.com's algorithm
determined that the above were some of
the most interesting photographs on
February 1 2006 and February 2 2006.

Flickr clusters the rankings based
on the dates the photographs were
uploaded to the site. Thus, a photograph
with the top popularity ranking for one day
will have equal popularity ranking with a
photograph with the top popularity ranking
for a different day. Since the photographs
are ranked using a quantitative approach,
there is likely to be a way to compare
relative rankings between different days,
but this is not yet exposed on the Flickr site
or API. The ranking is obtained from the

Flickr site using the Flickr web services
API. Flick exposes a remote method call
specifically designed to return photographs
ordered by the popularity ranking. Thus
interestingness is quantified based on the
position each photograph appears in the
list. For the purposes of this author's
experiments, photographs are limited to
certain sample areas. A sampling is taken
from the top of the ranked photographs.
Then, a more sparse sampling is taken for
less popular photographs in order to get a
useful representation of varying levels of
popularity. A minimum popularity is also
selected. The number of top rankings to
sample, degree of sparseness of
intermediate ranking samples, and
minimum popularity threshold are
variables used in a trial and error approach
during experimentation. The minimum
popularity threshold is used to scale the
output of the neural network to a unipolar
or bipolar value. For example, in the
unipolar case, the value of 0 represents
lowest popularity, and 1 represents highest
popularity. Additionally, categories of
popularity are defined to encourage
clustering during the training. For
example, category 1 is "Very Interesting";
category 2 is "Somewhat Interesting" and
category 3 is "Not Interesting." One
observation is that the user-based
measurement of a photograph's popularity
may not detect high quality photographs
that are currently marked with much lower
popularity on Flickr. This author hopes
that the general trend (higher rankings
imply higher quality and lower rankings
imply lower quality) will outweigh these
occurrences on average.

Several forms of input are used to
perform neural network operations for this
classification problem. Each form is
intended to isolate specific characteristics
of the image data. This produces a higher
variety of training data that are combined
to generalize the classification results. One

input form is the original raw photograph
data. This data is reduced to a 75x75 pixel
size to improve the performance of the
neural network simulation. Experiments
using higher-resolution imagery may be
performed but will require smaller sample
sets. This training data attempts to
approximate a popularity mapping function
based solely on the pixel data that
comprises the raw images.
Experimentation does not rely solely on
this technique due to the possibility of
overfitting the neural network during the
training. For example, given a set of 10
popular images and 10 unpopular images
in the training data, the neural network
may accurate in classifying the images, but
only based on detecting those specific
images and not any other factors leading to
their popularity. This observation is also
dependent on the sample set used.

Another form of input is the
histogram representation of color
distribution in the image data. This form
breaks down into three categories. The
first is a simple RGB (red/green/blue)
count of the image data. For example, a
photograph may be comprised of 20% red,
30% green, and 50% blue. Another
category is the one-dimension color
distribution histogram. Each color channel
is separately analyzed into a histogram
showing intensity versus channel value.
Three-dimensional color distribution
histogram is another category of histogram
representation. The three-dimensional
color histogram shows color intensity as a
function of all three of the RGB channels.
However, the three-dimensional histogram
input has a space cost of 16,581,375
elements for the full histogram
representation unless a sparse 3x3 matrix is
used. The goal behind the color histogram
techniques is to determine if the neural
network can predict popularity as a
function of color values. If successful the
algorithm will determine if photographs

that contain specific color distributions are
more likely to be popular than other
photographs.

An important consideration in the
analysis of photograph quality is the
luminosity or lighting values of the
photograph. The luminosity can be
approximated by conversion of the original
photograph into a gray scale
representation. The RGB color channels
will thus be equalized (monochromatic)
and a histogram analysis will express
luminosity , or light intensities, rather than
color distribution. Using these data in
training will determine if it is possible for a
neural network to predict popularity based
on light intensities. Specific distributions
of lighting values may increase the
probability of high photograph popularity.

Another input form is the use of
texture analysis via gray level co-
occurrence matrices. Co-occurrence
matrices are used to compute several
factors used to quantify texture properties
[4, 5]. These properties include: contrast
(or intertia), energy, entropy,
symmetricalness, correlation, dissimilary,
and homogeneity (or inverse difference
moment) [6]. Quantifications of these
properties are used to express spatial
relationships, tone and structure of an
image. The texture-based approach to the
training set includes both the examination
of input data resulting from texture
analysis, as well as the inclusion of the
entire co-occurrence matrix on scaled
images or image subsets. Experimentation
will explore the effect of using solely the
matrix-derived properties above versus
allowing the neural network to derive new
properties based on the co-occurence
matrix and the desired popularity rankings.

IV. EXPERIMENTAL METHODOLOGY

Obtaining Photographs

The first step was to obtain the raw
image data set from Flickr used for
training. Flickr makes available a web-
based API for directly accessing their
exposed services. To simplify the activity
of accessing this API, experiments herein
used flickrj, a free Java-based wrapper
around the Flickr API. Flickr
organizes popular photographs by date.
Three experimental sets of photographs
were obtained and are described below.

Four main experiments are
conducted. The first experiment performs
neural network training against a sample
data set of 559 images obtained from
Flickr.com. These images are categorized
into three distinct categories. The first
category, "Very Interesting", consists of
photographs whose popularity ranking falls
within to top 25. Nine different sample
days are used. The sample days are:
August 9, 2004 through August 12, 2004
inclusive, and August 15, 2005 through
August 19, 2005 inclusive. This category
contains of 221 distinct photographs.
Figure 2 depicts the top 25 photographs
from one of the nine sample days.

Figure 2: Top 25 Flickr.com photographs
from August 11, 2004. These photographs
are in the "Very Interesting" category.

The second category, "Somewhat
Interesting", consists of photographs whose
popularity ranking falls within the top 300
and 500, inclusive. These samples were
taken from the same nine days. This
category consists of 88 photographs.
Figure 3 depicts 11 photographs in this
category from one of the nine sample days.

Figure 3: Eleven sample photographs
from the "Somewhat Interesting" category.

The final category, "Not Interesting",
consists of photographs that do not fall in
the popularity ranking system on
Flickr.com. At the time these experiments
were conducted, Flick.com limited its
popularity rankings to 500 selected
photographs per day. Once the 500
photographs are ranked for a given day, the
remaining photographs are considered
unranked, and thus "not interesting". This
category contains 250 images for the
network training. Figure 4 depicts a
sample of photographs from this category.

Figure 4: Thirty-six sample photographs
from the "Not Interesting" category.

The second experiment uses the
neural networks trained in the first
experiment to attempt to predict popularity
clusters for another image data set with
known popularity rankings. The data set
contains 2381 images sampled from 67
different days. The sample days are: July
1, 2004 through July 31, 2004 inclusive,
August 1, 2004 through August 12, 2004
inclusive, August 5, 2005 through August
28, 2005 inclusive, and April 2, 2006. The
popularity categories are known in
advance. The "Very Interesting" category
contains 1373 samples. The "Somewhat
Interesting" category contains 557 samples.
The "Not Interesting" category contains
451 samples. Figures 5, 6, and 7 depict
samples from these categories.

Figure 5: Twenty-five "Very Interesting"
photographs from August 15, 2005.

Figure 6: Twenty-five "Somewhat
Interesting" photographs from August 15
through 17, 2005.

Figure 7: Twenty-five "Uninteresting"
photographs in the test set for the second
experiment.

The third experiment runs a sample
set of 250 photographs through the neural
networks trained in the first experiment.
These photographs have an unknown
popularity ranking. Additionally, they
were all very recently uploaded by users to
the Flickr web site at the time of the
experiment. Figure 8 depicts a sampling of
these photographs.

Figure 8: Twenty-five photographs from
the 250 images used in the third
experiment.

The fourth experiment uses the
trained neural networks to attempt to locate

interesting photographs from this author's
collection of photographs. A sample set
size of 2912 was used.

Processing Photographs Into Input Data

For each experiment, every photo is
processed to produce a set of image
metadata used as input data for the neural
networks. The neural network topologies
are described in a separate section below.
The types of input data used are as follows:

● Raw pixel data, RGB, 10-by-10
pixels

● Raw pixel data, Gray scale, 20-by-20
pixels

● One-dimensional color histogram,
RGB

● One-dimensional color histogram,
Gray scale

● Color percentages, RGB
● Color percentages, Gray scale
● Texture metadata

Practical limitations of neural
network topologies reduce the amount of
information that can feasibly by used as
input data. Thus, in the case of raw pixel
data, the original images must be down
sampled into smaller images. Flickr.com
provides multiple downloads for each
photograph. The medium and small
downloads are used for this paper's
experiments. The medium image size has
a maximum width and height of 500
pixels. The small image size has a width
of 75 pixels and height of 75 pixels. A
side effect of these formats is that the small
image size is not truly representative of the
medium image size, because the small
image size has an aspect ratio of 1:1,
whereas the medium image size can have
any aspect ratio, with the constraint that
neither the image height nor width may
exceed 500 pixels. Thus, the use of the
small image size as input often results in a
very loose approximation of the original

image. Further, for network training, the
full 75-by-75 raw pixel data produces a
very large input vector. For gray scale
image data, the input vector has a
magnitude of 5,625. For RGB image data,
we require three output channels each with
a magnitude of 5,625, thus the input vector
has a total magnitude of 16,875. For these
reasons the input data is further reduced to
image sizes of 10x10 for RGB images, and
20x20 for gray scale images. Input vectors
for RGB and gray scale then have a
magnitude of 300 and 400, respectively.

37 22 76 95 11 25 90 -126 -119 -101 30 10 -119 -109 22 4 88 107 -108 -87 22 4 96
-125 26 29 107 104 -113 -89 22 11 67 -58 106 -77 -90 86 -106 -82 -93 106 119 -25
111 -86 -83 93 -93 -75 -49 -51 -57 -62 107 47 104 -103 -81 -69 -56 -43 -93 -124 -116
79 126 -73 -70 -62 -81 -54 -67 -90 67 69 -98 -83 -82 -75 -90 -84 -103 107 81 54 115
-88 -82 -92 -104 -91 -99 122 102 72 124 -87 -90 -99 46 22 66 83 1 12 66 95 110 -128
39 9 -128 -118 19 0 75 84 125 -110 30 5 89 126 30 35 108 99 121 -111 30 10 59 -62
113 -64 -78 94 -126 -102 -85 105 108 -36 111 -77 -72 101 -114 -96 -41 -57 -75 -82
97 43 103 -107 -104 -92 -48 -51 -116 103 115 62 107 -94 -95 -87 -73 -64 -96 -127 33
41 -127 -116 -111 -104 -82 -80 -106 96 64 34 93 -111 -106 -116 -96 -87 -102 111 85
52 102 -110 -114 -123 45 14 54 71 0 0 38 57 67 85 38 4 119 -127 12 0 56 53 83 104
32 0 83 123 33 35 100 80 84 108 32 8 56 -61 121 -56 -80 81 97 121 -83 103 106 -32
119 -72 -78 86 111 -127 -38 -57
-77 -81 98 40 85 120 121 -123 -45 -53 -122 97 110 46 75 117 -126 -118 -70 -65 -102
120 21 19 87 86 115 122 -71 -77 -115 76 34 0 56 111 116 106 -85 -84 -111 91 55 17
65 112 108 99

Figure 9: Sample input vector for 10x10
RGB raw pixel data.

50 32 32 32 6 39 92 56 4 3 8 2 49 100 87 83 96 115 122 124 45 26 33 24 44 115 127
82 8 2 3 2 51 106 102 101 108 127 -122 -122 38 25 33 15 77 -68 -88 99 7 1 1 5 51 97
93 84 118 -117 -111 -114 32 31 30 13 69 -66 -65 91 19 12 4 8 50 97 103 91 119 -113
-106 -112 23 35 21 17 33 -121 -59 84 23 21 6 9 47 97 117 98 116 -113 -104 -111 20
30 13 22 9 88 -59 110 39 64 67 73 92 118 112 59 114 -110 -98 -106 32 24 13 25 15
84 -62 -94 75 -126 -100 -90 -89 -94 124 34 113 -108 -92 -99 48 21 18 27 32 101 -65
-51 79 -111 -81 -72 -75 -80 -119 38 110 -108 -90 -97 -78 -124 76 39 64 -105 -41 -40
94 -94 -33 -42 -58 -40 -88 53 124 -101 -84 -89 -46 -59 -84 -125 114 -95 -35 -18 120
119 -124 -117 -122 -120 120 80 -113 -92 -85 -93 -74 -57 -36 -52 -89 -93 -82 -88 127
72 34 50 86 109 -128 -109 -97 -87 -89
-97 -61 -63 -50 -49 -69 -82 -101 123 -96 104 35 27 83 -127 -111 -102 -98 -90 -91 -97
-47 -60 -55 -51 -65 -80 -109 106 -107 127 74 56 104 -109 -109 -117 -106
-93 -90 -93 -68 -64 -48 -53 -85 -108 125 94 83 78 66 78 117 -115 -109 -101 -109 -95
-89 -91 -61 -59 -54 -73 -106 -113 -114 122 70 44 39 73 110 123 -122 -104
-109 -98 -94 -95 -75 -74 -65 -70 -84 -85 -101 116 90 37 17 56 102 127 -117 -109
-110 -103 -101 -100 -69 -96 -74 -70 -113 -112 -108 99 59 57 46 45 96 -119 -123
-110 -109 -105 -109 -113 -83 -88 -79 -84 -111 126 103 67 59 54 40 37 86 -128 126
-117 -111 -108 -114 -119 -106 -88 -89 -95 -95 -116 106 91 90 77 57 48 92 -123 -123
-112 -113 -112 -119 -126 -113 -94 -98 -102 -88 -96 -118 -120 -128 108 81 65 100
-116 -116 -108 -113 -113 -123 125

Figure 10: Sample input vector for 20x20
gray scale raw pixel data.

The raw input data is scale-
dependent and position dependent, which
limits the ability to analyze input images
and compare them to other images. Thus
we conduct color analysis. Histogram
computations are performed on the color
distributions of the input images. Again an
input data size concern arises when using
color histogram data. In the case of three-
dimensional color histogram data in the
RGB color model, every combination of

red, green, and blue values must be
included in color counts. Since there are
256 possible color intensities in each of the
RGB channels, the total number of
combinations of colors is 16,777,216. This
is impractical for the neural network
learning algorithms. To reduce the
magnitude of the input vector for color
analysis, color metadata is limited to one-
dimensional histograms and color
percentage counts. In the case of one-
dimension histograms for full-color RGB
analysis, the input vector consists of three
channels, each containing 256 entries, for a
total magnitude of 768 inputs. In the case
of one-dimensional histograms for gray
scale analysis, the input vector consists of
only one channel. In the case of color
percentage counts, the image color data is
split into eight regions. Each region is
designated by color name: black, blue,
green, cyan, red, magenta, yellow, and
white. A color counting procedure
determines the percentages of the image
color data for each color category. The
color percentages provide a rough sketch
of the scale-invariant color distributions in
the input image.

3 0 2 2 3 3 2 2 2 2 4 9 2 3 4 6 4 5 6 9 10 11 6 15 6 4 9 11 16 6 10 14 11 9 21 13 10 20
14 11 12 3 16 12 11 11 9 15 18 13 15 10 12 23 14 27 19 28 16 27 31 23 24 29 29 36
29 34 42 38 39 36 40 47 58 51 65 79 46 73 74 73 82 96 77 114 130 126 134 149 154
148 180 202 185 222 242 258 270 305 378 456 513 672 892 1112 1498 1925 2429
3024 3578 3977 4457 4831 4867 5398 5661 5928 6321 6600 6802 7050 6790 6454
5585 4885 4381 4107 3875 3618 3375 2840 2284 1807 1519 1319 1252 1153 1286
1347 1359 1413 1349 1322 1240 1140 1051 991 957 951 1010 948 919 860 876 846
791 715 579 528 518 455 455 387 383 382 323 299 241 248 237 211 181 197 176
170 146 163 146 146 134 126 142 124 104 116 120 162 249 381 425 552 946 1517
1519 2041 1455 1078 1231 1264 876 813 926 1175 1238 934 437 391 298 118 111
35 17 15 13 14 7 10 11 12 6 12 11 6 4 6 6 5 2 3 6 4 2 2 6 2 2 7 2 5 2 2 3 2 4 0 1 2 1 2
2 1 0 2 1 3

Figure 11: Sample input vector for gray
scale, one-dimensional histogram data.

0.30002847 0.24680583 7.324219E-4 0.18839519 0.033996582 1.4241536E-4
0.018941244 0.21095784

Figure 12: Sample input vector for color
counts of an RGB image.

The last input vector used for
neural network training is texture-related
metadata. The follow quantitative data [5,
6] are computed for each input image:

● Contrast

● Correlation (also called Intertia)
● Dissimilarity
● Energy
● Entropy
● Homogeneity
● Correlation Matrix Sum
● Symmetry

For RGB images, the above values
are computed for each of the three color
channels, resulting in an input vector
magnitude of 24.

90926626 0.9999999999999951 3970046 1112022826 4708818.221576486
281642.73953644 748250 1 83762742 0.9999999999999989 3827710 892331760
4661049.616140028 286428.5259828772 748250 1 83712860 0.9999999999999941
3901552 527959020 4309677.930229572 280554.7784524056 748250 1

Figure 13: Sample input vector for texture
analysis of three-channel RGB image.

Each of the inputs required for
network training is obtained by use of a
free Java image processing library called
JIU. JIU computes color and light
intensity histograms, performs image
transformations, and performs texture
analysis. ImageMagick, a free image
processing utility, is used to convert input
images into gray scale images to be used to
represent luminosity. Experiments are
conducted on input files generated by JIU
and ImageMagick.

Once accurate training results are
established for the input vector types
decribed above, they are tested against the
unknown data set of photographs. These
photographs are obtained from other dates
showing popularity rankings on Flickr.
These photographs are not in the original
training data set. They are associated with
a popularity category based on the
quantified popularity ranking on Flickr,
thus an error rate is directly computed from
the experimentation. The trained networks
are then applied to sets of photographs that
do not have popularity measures. Thus,
experimental results can only be elaborated
using subjective measures.

The results of the accuracy obtained
from the experiments above is analyzed to
pick out which attempts can be used
together as a combined approach to predict
the popularity of unknown photographs.
These experimental results give insight
into a direction for further experimentation
to improve the success rate of these
techniques.

Neural Network Architecture

Initial experiments were conducted
on feed-forward networks using several
back-propagation algorithms. Further
experimentation resulted in a stronger
focus on the use of counter-propagation
algorithms for training. These neural
networks were simulated using Joone
(Java Object Oriented Neural Engine)
and JavaNNS, the Java-based successor to
SNNS (Stuttgart Neural Network
Simulator).

Joone is a neural network
framework designed to aid researchers,
professional users and enthusiasts in
creating, training and testing a variety of
neural networks [8]. It supports both
supervised and unsupervised learning, as
well as modular (hybrid) networks. The
supervised learning algorithms it supports
are feed-forward, recursive, time delay,
standard back-prop, and resilient back-
prop. The unsupervised learning
algorithms it supports are Kohonen SOMs
and Principal Component Analysis. The
Joone package features modular
components used to build and implement a
large variety of network designs.

JavaNNS provides a robust toolset
of neural network training algorithms for
simulating a large number of types of
neural network configurations [7].
Because it is based on SNNS, JavaNNS
supports a higher number of training
algorithms and network configurations
than Joone. Initial experimentation was
conducted using Joone, and final

experimental results were created using
JavaNNS.

V. EXPERIMENTAL RESULTS

Joone: Backpropagation Training

Initial experiments were conducted
in Joone using feed forward networks
employing backpropagation training
algorithms. The input data described in the
previous section was used to train these
networks. Outputs were defined as a
unipolar scaled representation of the
quantified ranking. A value of 0 represents
the lowest popularity rating. A value of 1
represents the highest popularity rating.
Seven networks were created,
corresponding to each of the image
metadata categories. These experiments
resulted in high error rates using the input
data described in the previous section.
This was due to the difficulty in
determining the number of hidden layers,
and number of neurons per hidden layer
that would result in successfully trained
networks. Also, the high dimensionality of
the inputs and high number of input
patterns contributed to the difficulty during
training. This path of experimentation was
abandoned in favor of pursing Kohonen
unsupervised training and counter-
propagation network (CPN) training in
JavaNNS. CPN was quicker to train and
more straightforward to implement.

Joone Kohonen Unsupervised Training

Exploratory experimentation was
conducted in Joone using the Kohonen
unsupervised training algorithm on the
texture metadata of 559 input images with
known popularity rankings. Twenty-four
input nodes were used, and five winner-
take-all output nodes were used. This
number of output nodes was selected
arbitrarily to discover any naturally-
forming clusters as a result of the Kohonen

training technique. As a result of the
training, only three clusters formed based
solely on the texture data. Figure 14
tabulates the clustering results on the 559
input patterns.

Cluster# # of images # of Very
Interesting

avg
rank

1 37 12 0.36

2 297 125 0.52

3 225 84 0.45
Figure 14: Clustering results on 599 input
patterns.

This result indicates a weak inclination of
cluster #2 to identify a majority of higher-
ranked samples. However, the average
ranking of the cluster (0.52) indicates this
cluster includes many samples with lower
rank. Further experimentation, particularly
using different numbers of output nodes
and different types of input metadata, may
produce more useful results. Without
further experimentation, it cannot be said
that cluster 2 will again identify the
majority of higher-ranked samples. A
Gaussian output layer may also be of
interest to identify trends in the input data.
The remaining experiments herein,
however, focus on CPN as it is more
successful at creating a "memory" of input
metadata provided by the images used for
training.

JavaNNS Counterpropagation Network

Training was performed in
JavaNNS using the counterpropagation
training algorithm. The network
architecture consists of an input layer
containing i nodes, a hidden Kohonen layer
containing k nodes, and an output layer
containing two nodes. Figure 15 illustrates
this architecture.

Figure 15: CPN architecture.

Five networks were successfully trained.
Each network corresponds to one of five
input vector types (raw RGB 10x10 pixel
data, raw gray 20x20 pixel data, RGB 1D
histogram, gray 1D histogram, and texture
metadata). JavaNNS could not perform
training on the color percentages input
vectors. The reason is unclear; one
possibility is that there is no good mapping
between the 8-dimensional input vector
and the two bit output. Another
possibility is misconfiguration of the
network and/or input pattern files.

The input layer size is dependent on
the pattern width of the metadata used as
input These are tabulated as follows:

● Raw RGB 10x10 pixel data: 300
● Raw gray scale 20x20 pixel data: 400
● RGB 1D histogram: 768
● Gray scale 1D histogram: 256
● Texture: 24

In each case, the hidden Kohonen layer is
set to 559 nodes, to correspond to the
number of images in the input set.

The output of the CPN consists of
two nodes whose values represent one of
three states: [0 0] for "Very Interesting", [1
0] for "Somewhat Interesting", and [1 1]
for "Not Interesting". The choice of only
three categories was done to reduce the
computational overhead of larger neural
networks, thus speeding the training.
JavaNNS assigns random weights to the
network during initialization, rather than
directly computing the weights needed to
activate the appropriate winner-take-all
neurons in the Kohonen layer. As a result,
the training performance is very dependent
on the number of nodes in each layer.

CPN training of the five networks,
each using 559 training patterns, resulted
in sum-of-squares error below 0.01. The
2381 patterns belonging to the test data set
with known popularity rankings were
applied to each of the five trained
networks. Accuracy percentages,
calculated as number of correct outputs
divided by number of patterns, are
tabulated below:

● Texture: 51%
● Raw RGB: 47%
● RGB histogram: 53%
● Gray scale histogram: 51%
● Raw gray scale: 48%

The results indicate a poor ability of the
networks to strictly identify specific
ranking clusters. The breakdown below of
accuracy percentages by cluster shows
some improved results:

● Texture, Very Interesting: 50%
● Texture, Somewhat Interesting: 32%
● Texture, Not Interesting: 76%

● Raw RGB, Very Interesting: 46%
● Raw RGB, Somewhat Interesting:

24%
● Raw RGB, Not Interesting: 79%

● RGB histogram, Very Interesting:
46%

● RGB histogram, Somewhat
Interesting: 32%

● RGB histogram, Not Interesting:
80%

● Gray scale histogram, Very
Interesting: 54%

● Gray scale histogram, Somewhat
Interesting: 26%

● Gray scale histogram, Not
Interesting: 75%

● Raw gray scale, Very Interesting:
54%

● Raw gray scale, Somewhat
Interesting: 24%

● Raw gray scale, Not Interesting: 81%

The results indicate a high accuracy in
determining that a given image falls in the
"Not Interesting" category. Further
analysis indicates that in a majority of
cases (70% and higher), the neural network
will produce an output of "Very
Interesting" accurately, and the
combination of outputs to filter out false
positives increases the accuracy
significantly, at the expense of causing the
neural network to overlook photographs
known to be in the "Very Interesting"
category. This analysis is tabulated by
defining a threshold. This threshold
indicates how many of the five networks
have classified a given image as "Very
Interesting." For example, a threshold of
two indicates that at least two of the five
networks have classified an image as "Very
Interesting". As this threshold increases,
accuracy increases while the total number
of detections of known "Very Interesting"
samples decreases. These results are
tabulated as follows:

Threshold: 1
● Known "Very Interesting" photographs

detected: 1241
● Percentage of total number of known

"Very Interesting" photographs (1373):
90%

● Number of false positive detections:
577

● Total number of detections: 1818
● Error rate: 32%

Threshold: 2
● Known "Very Interesting" photographs

detected: 988
● Percentage of total number of known

"Very Interesting" photographs (1373):
72%

● Number of false positive detections:
392

● Total number of detections: 1380
● Error rate: 28%

Threshold: 3
● Known "Very Interesting" photographs

detected: 609
● Percentage of total number of known

"Very Interesting" photographs (1373):
44%

● Number of false positive detections:
183

● Total number of detections: 792
● Error rate: 23%

Threshold: 4
● Known "Very Interesting" photographs

detected: 355
● Percentage of total number of known

"Very Interesting" photographs (1373):
26%

● Number of false positive detections: 59
● Total number of detections: 414
● Error rate: 14%

Threshold: 5
● Known "Very Interesting" photographs

detected: 247
● Percentage of total number of known

"Very Interesting" photographs (1373):
18%

● Number of false positive detections: 8
● Total number of detections: 255
● Error rate: 3%

These results are promising, because they
demonstrate the ability of the trained
neural networks to produce accurate
detections of "Very Interesting"
photographs when used in conjunction
with a threshold. However, many of the
"Very Interesting" photographs are
misclassified as "Somewhat Interesting" or
"Not Interesting" when the threshold is
increased. These results are greatly
improved by merging the "Somewhat
Interesting" category with the "Very
Interesting" category. Thus, the output of
the neural network can be simplified to

classifying between images that are
"Interesting" or "Not Interesting." Results
reflecting this merge as as follows:

Threshold: 1
● Known "Interesting" photographs

detected: 1859
● Percentage of total number of known

"Interesting" photographs (1930): 96%
● Number of false positive detections:

190
● Total number of detections: 2049
● Error rate: 9%

Threshold: 2
● Known "Interesting" photographs

detected: 1604
● Percentage of total number of known

"Interesting" photographs (1930): 83%
● Number of false positive detections:

162
● Total number of detections: 1766
● Error rate: 9%

Threshold: 3
● Known "Interesting" photographs

detected: 1211
● Percentage of total number of known

"Interesting" photographs (1930): 63%
● Number of false positive detections: 98
● Total number of detections: 1309
● Error rate: 7%

Threshold: 4
● Known "Interesting" photographs

detected: 740
● Percentage of total number of known

"Interesting" photographs (1930): 38%
● Number of false positive detections: 34
● Total number of detections: 774
● Error rate: 4%

Threshold: 5
● Known "Interesting" photographs

detected: 409
● Percentage of total number of known

"Interesting" photographs (1930): 21%
● Number of false positive detections: 9

● Total number of detections: 418
● Error rate: 2%

These results suggest that a given
image's similarity to an image in the
known "Interesting" group can predict its
own membership to that group. This
similarity is measured in terms of the
counter-propagation network performing a
closest-match search of the image's
representative metadata to the input
patterns provided during the training phase.

Subjective Experiments

The final experiments attempt to
apply the trained CPN from the previous
learning phase to image data sets that are
not associated with quantifications of
popularity. The first set of images is a
random sampling of 250 of the most recent
images uploaded to the Flickr web site at
the time of the experiment. The second set
of images is a sampling of 2912
photographs from the author's personal
collection of digital photographs.

Flickr.com test set results

Input data is generated for the 250
Flickr test images in similar fashion to the
training and verification test sets from the
previous experiments. With a threshold of
5 (that is, all five networks classify the
image as "Interesting"), only 14 images are
classified as "Interesting". Figure 16
contains the 14 images selected.

Figure 16: The 14 images classified as
"Interesting" by all five counter-
propagation neural networks. To see the
large version of these images, go to the
following URL:
http://oranchak.com/paper/flickr-5/int-5-large.html

With a threshold of 4, more photographs
are classified as "Interesting". The total for
this case is 57 photographs. They are
displayed in Figure 17.

Figure 17: The 57 images classified as
"Interesting" by at least four out of five of
the counter-propagation neural networks.
To see the large version of these images,
go to the following URL:
http://oranchak.com/paper/flickr-4/int-4-large.html

Was this experiment successful? The
question is very subjective and difficult to

measure. In this author's opinion, most of
the photographs in both threshold groups
are indeed interesting. However, only a
smaller number of the photographs seem to
share the consistently high subjective
qualities that the top ranked photographs
on Flickr.com exhibit. A better measure
would be to survey user reaction to test sets
of photographs to measure their levels of
interest in the photographs. More
discussion on this topic is found in the
Discussion section.

Personal photograph test set results

Input data is generated for the 2912
test images from the author's collection of
digital photographs in similar fashion to
the training and verification test sets from
the previous experiments. With a
threshold of 5 (that is, all five networks
classify the image as "Interesting"), only 98
images are classified as "Interesting". Too
numerous to include in this paper, they can
be seen at the following URL:

http://oranchak.com/paper/personal-5/int-5.html

To this author, there is no clear majority of
interesting photographs in this result. The
networks have indeed selected some very
interesting photographs, but too many of
the photographs are ordinary family
photographs with little distinguishing
photographic quality. More
experimentation is required to determine
why the networks have more success
classifying interesting images that originate
from the Flickr site.

VI. DISCUSSION

Results herein indicate a high
degree of success in training neural
networks with the counter-propagation
algorithm to predict the popularity
potential of arbitrary images from the
Flickr web site. A great deal of further

refinement via expanded experimentation
is required to improve the technique. One
limitation in the current technique is that
despite good accuracy on predictive
capability against Flickr images with
known and unknown popularity rankings,
the trained neural networks do not perform
well against arbitrary images from the
author's personal photograph collection.
One potential problem is that the input
images were resampled down to the 10x10
and 20x20 pixel data sizes without
preserving the aspect ratio on the images.
Flickr automatically crops all of their
images during resizing to preserve aspect
ratio. A similar process must be applied to
non-Flickr data sets to have a consistent
comparison. Additionally, the non-Flickr
input data used for histogram and texture
analyses were not resized to the same
relative scale of the medium-sized
photographs obtained from Flickr.
Possibly, this difference of scale may help
contribute to poor network accuracy.
Finally, to verify the usage of the neural
network, the winner-take-all nodes of the
Kohonen layers of the neural networks
should be linkable back to the images they
are representing. In this way, a classified
image can be compared to the training
images that contribute to its classification.
Network parameters can be adjusted based
on this comparison to tune the ability of
the CPN to achieve the best match to
training images. A user interface that
prompts the user with such a comparison
and accepts the user's "vote" about
agreement on the match can significantly
improve the network performance.

Additional improvements to the
CPN approach in general for this problem
include the following:

● Create input vectors based on texture
analysis of the gray scale version of
the original image data.

● Increase the height/width of the raw
pixel data used as input

● Perform intelligent anti-aliasing of
pixel data to preserve as much image
data as possible while
resizing/downsampling.

● Use a hybrid network to improve
accuracy. For example, a tuning
network could be attached to each of
the outputs of the five counter-
propagation networks to improve the
classification of interesting images.

● Split up the texture input data into
multiple networks to try to isolate the
dependencies in the data.

● Include more types of image analysis
metadata as input.

● Explore the use of other node types
as replacements for the winner-take-
all nodes in the Kohonen layer. For
example, Gaussian nodes may
provide more probabilistic
information related to how well an
pattern matches the network's
memory of trained data. For
example, Gaussian nodes may
provide the ability to detect an
ordered list of best matches, rather
than limiting the match to exactly
one image. The Euclidian distances
related to multiple Gaussian nodes
may provide more information about
how strongly an input pattern
matches the training data.

● Alter the number of output nodes to
vary the range of values to which the
input patterns are mapped.

Further, more exploration is
required to determine the effect on CPN
training using using scale- or position-
dependent input data versus scale- or
position-independent input data. These
kinds of data can result in misclassification
by CPN because a simple change in the
input data can drastically change the
comparison to other image data in the
networks. For example, raw pixel data is
position and scale dependent. A one-pixel
offset in an image can completely change

its computed distance from other image
patterns in the CPN. Further research is
needed to improve the technique of
sampling portions of the input image to
account for these effects.

VII. BIBLIOGRAPHY

[1] M. S. Bartlett, P. A. Viola, T. J.
Sejnowski, B. A. Golomb, J. Larsen, J. C.
Hager, and P. Ekman, "Classifying Facial
Action", Advances in Neural Information
Processing Systems 8, D. Touretzky, M.
Mozer, and M. Hasselmo (Eds.), MIT
Press, Cambridge, MA, 1996. p. 823-829.

[2] H. A. Rowley, S. Baluja, and T.
Kanade, "Human Face Detection in Visual
Scenes", in Proc. PAMI 98, 1998.

[3] M. Gallagher, and P. Deacon,
"Neural Networks and the Classification of
Mineralogical Samples Using X-Ray
Spectra", In L. Wang et. al., editors, Proc.
International Conference on Neural
Information Processing (ICONIP'02), pp
2683-2687, 2002. IEEE Press, Piscataway,
NJ.

[4] J. H. P. Burrill, "Texture Mapping
of Neurological Magnetic Resonance
Images", [Online document] 2003,
Available at :
http://www.burrill.demon.co.uk/meddoc/t
mnmri.html

[5] M. Sonka, "Texture: Statistical
texture description
", [Online document] June 1999, Available
at:
http://www.icaen.uiowa.edu/~dip/LECTU
RE/Texture1.html

[6] M. Halllbey, "Gray Level Co-
Occurrence Matrix Tutorial", [Online
document] 2002, Available at:
http://www.fp.ucalgary.ca/mhallbey/tutoria
l.htm

[7] A. Hoenselaar, "JavaNNS: Java
Neural Network Simulator", [Online
document] 2006, Available at:
http://www-ra.informatik.uni-
tuebingen.de/software/JavaNNS/welcome_
e.html

[8] P. Marrone, "Joone - Java Object
Oriented Neural Engine", [Online document]
2004, Available at:
http://www.jooneworld.com/

