
Evolutionary Algorithm for Generation of
Entertaining Shinro Logic Puzzles

David Oranchak

http://oranchak.com

Abstract. A Shinro puzzle is a type of deductive reasoning puzzle that
originated in Japanese periodicals. To solve the puzzle, one must locate
twelve hidden stones on an 8x8 grid using only clues in the form of
stone counts per row and column, and arrows placed in the grid that
point to some of the hidden stones. Construction of these puzzles by
hand is tedious. We explore the use of a simple genetic algorithm that
automates construction of Shinro puzzles with desirable qualities which
improve their entertainment value.

Key words: genetic algorithm, logic puzzles

1 Introduction

Puzzability is a company that specializes in creating and selling a variety of
puzzles. In 2007, the company developed and sold a new kind of logic puzzle to
Southwest Airlines. The airline began publishing these new puzzles as a regular
feature in Spirit, their inflight magazine. Named Shinro, a Japanese word that
means ”compass bearing”, the puzzle is a simple 8x8 square grid containing
twelve holes in unknown locations. Along the top of the grid is an additional
row of eight squares. Each square indicates the total number of holes hidden
in the column under that square. Similarly, along the left side of the grid is an
additional column of eight squares, each indicating the total number of holes
hidden in the row to the right of that square. Directional arrows within the
puzzle point to some of the hidden holes. Example puzzles are shown in Figure
1. One solves the puzzle by making a series of reasoned deductions in a process
of elimination, identifying squares that must contain holes, and squares that
cannot possibly contain holes. The puzzle solver continues until all twelve holes
have been located.

Henceforth, we refer to the holes as ”stones” to reflect our own implementa-
tion of Shinro.

The popularity of the Shinro puzzles in Spirit has led to development of
various Shinro video games [1][2][3] and web sites [4][5]. This suggests there
is a market for creating new Shinro puzzles. Puzzles are created by selecting
hidden stone locations, directional arrow locations, and a desired difficulty in
deducing the solution. Construction of these puzzles via automation eliminates
the time-consuming and tedious task of designing valid and entertaining puzzles

2 David Oranchak

Fig. 1. Sample Shinro puzzles published in Spirit magazine [6]

by hand. The number of possible Shinro puzzle configurations is astronomical.
Each of the 64 positions of an 8x8 puzzle grid can have one of ten possible values
(empty, a stone, or one of eight kinds of arrows), bringing the total search space
size to 1064. We can reduce this by observing that every valid board must have
exactly 12 stones. Thus there are s =64 C12 = 64!

12!(64−12)! possible ways to place
stones, and c = 952 remaining possible combinations for the grid positions that
lack stones, bringing the total search space down to s× c = 8.0× 1040 puzzles.
Still much too large for exhaustive searches. A genetic algorithm is suitable for
searching such a large space [7]. Mantere and Koljonen were able to show that a
GA was an efficient method of generating another kind of constraint satisfaction
problem: the sudoku puzzle [8].

2 Methodology

Automatic construction of Shinro puzzles requires development of an algorithm
that can automatically solve them. This solver algorithm is used to measure the
validity and difficulty of a constructed puzzle, and to estimate its entertainment
value. This requires identification of each of the techniques used to solve the
puzzles. A similar strategy employed by Ortiz-Garcia et. al. was effective for
generating picture-logic puzzles [9].

Stones are located by identifying logical consequences to observations of the
puzzle grid state. Similar observations lead to the identification of locations
that cannot contain stones. Such locations are marked as ”filled”. Some of these
identifications are easy or trivial to make, while others can be quite challenging.
The logical deductions described below are used to automatically solve many
Shinro puzzles. The automated solver is the basis for the evolutionary algorithm
discussed later.

Count of unfilled positions equals number of remaining stones: If
the number of free positions along a row (column) equals the stone count of that

Evolutionary Algorithm for Generation of Entertaining Shinro Logic Puzzles 3

row (column), less the number of stones that have already been placed in that
row (column), then these positions must contain stones (Figure 2).

Row or column count is satisfied: If the number of stones placed in a
row (column) exactly matches the stone count for that row (column), then all
free positions can be marked as filled (Figure 3).

Fig. 2. A and B must be locations of
stones since the stone count for that row
is two.

Fig. 3. A, B, and C can be marked as filled
because the row count is satisfied by the
stone in the third column.

Arrow points to only one free square: An unsatisfied arrow is an arrow
that points to no placed stone. Therefore, there is a hidden stone somewhere
along the unsatisfied arrow’s path. If there is exactly one free position along the
arrow’s path, then it must contain a stone (Figure 4).

One stone remains to be placed, and there is a horizontal or vertical
arrow: Consider a row (column) whose stone count, less the number of placed
stones along the row (column), is equal to one. If this row (column) contains an
unsatisfied horizontal (vertical) arrow, it must point towards the one remaining
stone. Therefore, all free positions the arrow points away from cannot contain
stones, and thus can be marked as filled (Figure 5).

Fig. 4. A has to be a stone. It is the only
free position the arrow to its upper right
is pointing to.

Fig. 5. A, B, and C cannot possibly be
stones, since the horizontal arrow points
towards the region of the row that contains
the one remaining stone.

Locations can be excluded based on identification of non- intersect-
ing arrow paths: This type of deduction identifies regions of rows (columns)
in the puzzle in which some number of possible stone placements can be marked
as filled due to constraints imposed by unsatisfied arrows pointing into those
regions. Figure 6 depicts an example.

Let X denote all free positions within some subset of rows (columns) of the
puzzle, where |X| > 1. Let n denote the total count of stones remaining to be
placed within the rows (columns) of X. Let A denote some subset of unsatisfied
arrows of the puzzle. Let us require that each arrow in A has free positions along
its path that are contained entirely within X, and that no arrow in A has a path

4 David Oranchak

whose free positions intersect the free positions in the path of another arrow
in A. Let P denote the set of positions within X that are covered by the free
positions along the paths of every arrow in A. If |A| = n, then we know that
all remaining stones must be located somewhere in positions in P. Therefore, no
stones will be found in X \ P , and these remaining positions can be marked as
filled.

These moves can be quite difficult to locate.

Fig. 6. Two arrows indicate stones along the dotted paths. Since the paths do not
intersect, there must be a total of two stones represented by the paths. The covered
rows have a total stone count of two. Therefore, none of the non-dotted positions along
the covered rows can possibly be a stone, and thus they can all be marked as filled.

Locations can be excluded based on satisfiability of remaining ar-
rows: A free position can be marked as filled if placing a stone there causes an
arrow to become unsatisfiable (Figure 7).

Locations can be excluded based on the pigeonhole principle: This
is another type of move that can be difficult to locate. In this move, unsatis-
fied arrows impose constraints on a row (column) such that their satisfaction
results in narrowing down the possible choices for filled positions along the row
(column). This narrowing of choices for the filled position entails a reduction in
the possible locations for remaining stones to be placed in that row (column).
Figure 8 depicts an example.

Let X denote a row (column). Let n be the number of stones remaining to be
placed in X. Let m > n be the number of unfilled positions in X. Let P be the
set of unfilled positions in X, whose column (row) count of remaining stones, less
the count of placed stones, is equal to one. A total of m−n positions along X will
be marked as filled. We seek m− n unsatisified arrows, A, whose paths contain
unfilled positions. Let us require that there is no arrow in A whose unfilled
positions intersect the unfilled positions of another arrow in A, or whose unfilled
positions intersect P . Let us also impose that every unfilled position represented
by A must share the column (row) of a position in P . Thus, satisfaction of an
arrow in A identifies a subset of P in which a filled position must be located. Let
S be the set of all such subsets. Each time a subset is added to S, the possible
stone positions in X is reduced by one. Once this count reaches m− n, then we
know that stones must be located in any position in X that is not in P .

Evolutionary Algorithm for Generation of Entertaining Shinro Logic Puzzles 5

Stone placements can be excluded due to impossible scenarios: An
attempt to place a stone at a given position can be excluded if the placement
results in subsequent moves that lead to an impossible or invalid puzzle state. It
is assumed that such brute force attempts to solve Shinro puzzles by exhaustion
have little entertainment value. Therefore, we will not consider these moves,
except for the simple form shown in Figure 7.

There may be further types of useful deductions that are not identified above.

Fig. 7. Placement of a stone at A or B re-
sults in an arrow that is impossible to sat-
isfy. Therefore, A and B can be marked as
filled.

Fig. 8. Pigeonhole principle: The indicated
arrow points to a stone along the dotted
path. Either placement will satisfy its cor-
responding column count. Therefore, either
C or D will be marked as filled. Thus there
are only three possible stone placements re-
maining along the row ABCD. Since the
filled position must be C or D, and the row
count is also three, A and B must be stones.

2.1 Entertainment Value

We assume that completely randomized puzzle configurations are not very fun to
play in the long term. We want the generator to create a variety of interesting and
entertaining puzzles. Therefore, we need to measure or estimate these qualities.
Some of the factors guiding the puzzle designs are listed below.

– We require a degree of control of the difficulty level of generated puzzles.
They should neither be too difficult nor too easy to solve. Trivial puzzles
and unusually difficult puzzles will quickly tire players.

– Puzzles should have exactly one valid solution.
– We should generate puzzles whose stones and/or arrows form a variety of

interesting patterns and symmetries that are more pleasing to view than
completely randomized puzzles.

6 David Oranchak

3 Evolutionary Algorithm

A simple genetic algorithm is used to generate the Shinro puzzles. The values
of several configuration parameters determine the type of puzzle that is gener-
ated. A selection of fitness functions is available to guide the development of
an assortment of puzzle varieties. A target pattern constraint can be optionally
configured, restricting the possible values for some set of positions of the puzzle
grid. This permits evolution of puzzles that conform to pre-designed patterns,
shapes, and configurations.

3.1 Genome Encoding

Generated puzzles are encoded in an nxn matrix of integer values representing
the contents of puzzle grid squares. The possible grid square interpretations are:
empty, hidden stone, and arrow pointing in one of eight possible directions.

The optional target pattern constraint can be specified as another nxn matrix
of constraint values. This matrix is consulted during population initialization
and mutation to prevent insertion of grid square values that violate the given
constraints. The constraint types are: Square has no constraint, square must
contain an arrow with a specific direction, square must contain a stone, square
must be empty, square must contain any arrow, square must contain a stone or
any arrow, and square must not be an arrow.

3.2 Initialization

The population of genomes is set to a small size, 10, due to the amount of time
needed to perform the fitness evaluation described below. Genomes are initial-
ized to random values. If a target pattern constraint is present, initialization of
constrained grid squares is limited to values that do not violate the constraint.

3.3 Genetic Operators

At each generation, a new population is constructed using tournament selection
of size three. Elitism is used to prevent loss of good individuals. This is imple-
mented by simply tracking the best evolved individual for the entire run, and
copying this individual into each new population.

Crossover is not implemented due to its assumed destructive effect on the sat-
isfaction of constraints of the Shinro puzzles, namely the required fixed number
of stones, the set of valid arrows that each point to at least one stone, and the
optional target pattern constraint. Further research is necessary to determine
the effectiveness of various crossover operators.

When the new population is constructed, mutation is applied by randomly
selecting one of a number of available mutators:

– Loop through the puzzle grid and probabilistically change the value of a
square. The mutation rate is itself randomly selected from the range [0, 1].

Evolutionary Algorithm for Generation of Entertaining Shinro Logic Puzzles 7

– Swap two randomly selected puzzle grid squares. Repeat n times, where n
is randomly selected from the range [1, 3].

– Add an arrow to a randomly selected square.
– Randomly select an arrow and remove it.
– Add a stone to a randomly selected square.
– Randomly select a stone and remove it.

Further, the mutator randomly decides whether or not to enforce symmetry,
and whether or not to enforce rotational symmetry. If symmetry is enforced,
the selected mutator projects the resulting mutations about the horizontal and
vertical axes of the puzzle, both located at the center of the puzzle grid. But if
rotational symmetry is enforced, the selected mutator instead projects a puzzle
quadrant’s mutation into the remaining quadrants by repeatedly rotating the
quadrant of the originating mutation by 90 degrees.

The algorithm stops when a minimum number of generations has passed
without any improvement to the best genome. The run’s statistics and best
genome are noted, the population is again reset, and the evolutionary algorithm
is repeated. This is done to collect many generated puzzles of high fitness. A
final step runs a brute force search on the generated puzzle to ensure that only
one unique solution is possible. This computation is not performed during fitness
evaluation due to its significant performance impact.

3.4 Fitness Function

The automated solver for generated Shinro puzzles is the basis for fitness com-
putations. The solver inspects each generated puzzle and attempts to solve it
using a greedy approach. In the greedy approach, the algorithm looks for easy
moves first before proceeding to more difficult moves. Once a move is found, the
search for more difficult moves is aborted, and the found move is applied to the
puzzle state. The search then repeats until all stones have been located, or no
further moves are located. This greedy approach is used to reduce the execution
time of the search. The algorithm tracks the counts and types of moves. These
counts are used in fitness computations.

We used several fitness functions to evolve a variety a puzzles. Each fitness
function shares a common factor: the normalized error count:

ε =
1

1 + |s− s′|+ a+ v + |m−m′|+ e
(1)

s is the number of stones required for this puzzle. s′ is the number of stones
encoded in the genome. a is the number of arrows found that do not point
to a stone. If a target pattern constraint is used, v is the number of violated
constraints found; otherwise, it is zero. m is the minimum number of solver
moves required for acceptance of this generated puzzle. m′ is the actual number
of moves (of any difficulty level) used by the solver to solve this puzzle. If we are
evolving for symmetry, e is the number of grid positions that violate symmetry;
otherwise, it is zero.

8 David Oranchak

By itself, this single factor applies evolutionary pressure to locate puzzles that
satisfy fundamental constraints. We evolve other desirable puzzle properties by
introducing other factors into the fitness function:

– Maximizing the number of moves required to solve the puzzle:

f = ε× [1− 1
(1 + stepsd)

] (2)

where stepsd is the number of moves used by the solver to reach a solution.
d represents the difficulty factor. When evolving for maximum count of all
move types, all move difficulties are counted, and stepsd is equivalent to m′.
Otherwise, we only count moves of the specified difficulty level; thus, stepsd

may be less than m′.
– Maximizing the clustering of stones and/or arrows:

f = ε× [1− 1
(1 + stepsd)

]× [1− 1
1 + c

], (3)

c =
∑
i,j

s(i, j), (4)

s(i, j) =
u=i+1,v=j+1∑

u=i−1,v=j−1,(u,v) 6=(i,j)

count(u, v) (5)

The following applies only if the item at position (i, j) is the type of item for
which we are clustering: count(u, v) returns 1 if the item at (i, j) is found at
(u, v) and (u, v) is horizontally or vertically adjacent to (i, j). This represents
a strong clustering. count(u, v) returns 1

4 if the item at (i, j) is also found
at (u, v) and (u, v) is diagonally adjacent to (i, j). This represents a weak
clustering. count(u, v) returns 0 if the item at (i, j) is not found at (u, v).

4 Results and Conclusions

The first optimization task was to maximize the number of moves required to
solve the generated Shinro puzzles. Figure 9 shows a high-fitness evolved puzzle
requiring 37 moves in the automated solver to reach a solution. Despite the high
number of moves, the puzzles generated this way remain very easy to solve,
because the high numbers of arrows generally give up many clues about stone
locations.

Evolution of puzzles with horizontal, vertical, and rotational symmetry of
stone and arrow positions was greatly improved by introducing symmetric oper-
ations to the standard mutation operators. For instance, instead of changing a
single grid value, each of the symmetric grid values are simultaneously changed
during a single mutation. Figure 10 shows a generated symmetric puzzle. Fig-
ure 11 shows a generated puzzle that has rotational symmetry.

Evolutionary Algorithm for Generation of Entertaining Shinro Logic Puzzles 9

Fig. 9. Evolved puzzle configuration that
requires 37 moves to solve.

Fig. 10. Puzzle with symmetry. Requires
24 moves to solve.

Similarly, when a target pattern constraint is specified, we wanted to prevent
mutation from introducing violations to the specified constraint (Figure 12
depicts a sample constraint that the stones must form the letter ”A”). The
modified mutation operator checks the constraint prior to changing a grid square
value. If the change violates the constraint, the change is suppressed.

To control the difficulty of generated puzzles, several evolutionary runs con-
centrated on maximizing specific types of moves. The most difficult move repre-
sented by the automated solver is the move based on the ”pigeonhole” principle.
The easiest of any other available move is greedily selected by the automated
solver, reflecting the assumed bias of human players to locate the easiest moves
first. Pigeonhole moves are not selected unless no other moves are available.
Thus, puzzles that maximize these moves were challenging to discover. One such
discovered puzzle, requiring four distinct pigeonhole moves, is depicted in Fig-
ure 13.

The simple genetic algorithm was very effective for the construction of a wide
variety of interesting, challenging, and fun Shinro puzzles. Several aspects of our
approach warrant further study. The first is the impact of the greedy aspect of
the automated solver on evolutionary search. To what extent does the order of
moves affect the optimization of puzzle metrics? Another area of future study
is the identification of move types that are not represented herein. Can they
be discovered by evolutionary search? Would their discovery greatly affect the
current evaluation of desirable qualities of generated puzzles? Also, other metrics
of desirable puzzle qualities, such as balance of move types, or arrow density,
may be useful in further research.

Acknowledgments. I wish to thank Arash Payan, creator of the wonderful
iPhone game Jabeh which is based on Shinro, and Amy Goldstein of Puzzability,
the company that created Shinro puzzles, for their contributions to my research
on the background and origins of Shinro puzzles.

10 David Oranchak

Fig. 11. Puzzle with rotational symme-
try, including arrow direction. Requires 30
moves to solve.

Fig. 12. Puzzle evolved with target pattern
constraint: Stones must form ”A” shape.
Requires 19 moves to solve.

Fig. 13. Evolved puzzle that requires four ”pigeonhole” moves. Moves proceed from
left to right. Dots indicate sets of possible stone positions that further constrain the
indicated row or column. Each s indicates the deduced location of a stone due to the
necessary placement of another stone somewhere among the dots.

References

1. Jabeh - Logic Game for iPhone and iPod Touch, http://jabeh.org/
2. Shinro Mines for iPhone and iPod Touch, http://www.benjiware.com/main/

Shinro_Mines.html

3. Shinro - the Next Sudoku (iPhone game), http://web.me.com/romancini/Far_

Apps/Shinro.html

4. Shinro Puzzles, http://shinropuzzles.web.officelive.com
5. Sternenhimmel, http://www.janko.at/Raetsel/Sternenhimmel/index.htm
6. Fun and Games. In: Southwest Airlines Spirit Magazine (2007)
7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley (1989)
8. Mantere, T. Koljonen, J: Solving, rating and generating Sudoku puzzles with GA.

In: IEEE Congress on Evolutionary Computation (2007)
9. Ortiz-Garćıa, E.G., Salcedo-Sanza, Sancho, Leiva-Murillob, J.M., Pérez-Bellidoa,

A.M., Portilla-Figuerasa, J.A.: Automated generation and visualization of picture-
logic puzzles. Computers & Graphics 31(5):750-760, 2007.

