
Evolutionary Algorithm for Generation of Entertaining Shinro Logic Puzzles

Shinro puzzles are fun logic puzzles that first appeared
in Japanese puzzle magazines, and enjoyed renewed
popularity when an airline company adapted the puzzles
for their inflight magazine.

David Oranchak, doranchak@gmail.com http://oranchak.com

Evolutionary Algorithm for Generation of Entertaining Shinro Logic Puzzles

Each puzzle has twelve hidden stones. Arrows point to
some of the hidden stones. Numbers along the side and
top indicate how many stones are in each row and
column. Armed with these clues, you must deduce the
location of all stones.

Original puzzle as it
appeared in Spirit

magazine by
Southwest Airlines

PROBLEM: HOW TO GENERATE
THE PUZZLES

Clearly, constructing the puzzles by hand is very time-
consuming. There are very many valid puzzle
configurations. Completely randomized puzzles are
not very much fun, because they can be too easy to
solve, lack aesthetic qualities, and seem too repetitive
or boring. How can we create entertaining puzzles?

DESIRED PUZZLE QUALITIES

• Solution validity.
• No brute force or guessing allowed.
• High number of steps in the solution.
• Specific difficulty level.
• Stones and/or arrows form interesting patterns and

shapes.

To measure solution validity, solutions steps, and
difficulty level, we built a Shinro puzzle solver. The
solver uses logical deduction rules to solve the puzzles.

What makes a puzzle invalid?

• The puzzle does not have exactly 12 stones.
• The puzzle has an arrow that does not point to a

stone.
• The solver cannot reach exactly one unique solution.
• The solver reaches a solution but it is incomplete, or

does not match the stone locations.
• Brute force or guessing is necessary to solve the

puzzle.
• The puzzle can be solved too quickly with too few

steps.

A

A

A

A

A

BBBBBBB

C C C

D E

A

B

C

D

E

Must be stones, since the count is 5 for this
column, and there are only 5 free positions.
Cannot be stones, since the count is 0 for this
row.
Cannot be stones, since placing one here makes
the right-facing arrow unsatisfiable.

Must be a stone because the arrow points to its
only possible position.

Cannot be a stone, otherwise we cannot satisfy
both the adjacent left- and right-facing arrows.

Sample puzzle demonstrating easy logical deductions

SOLUTION: GENETIC ALGORITHM

We can evolve puzzles using a genetic algorithm that
optimizes for the desired puzzle characteristics.

0 6 0 0 2 5 5 5
0 0 0 0 5 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 6 5 5 0
0 0 0 0 0 0 0 5
0 0 0 0 3 0 9 5
6 0 9 0 5 5 5 0
0 0 0 0 9 0 0 0

0 0 0 0 0 5 5 5
0 0 0 0 5 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 0 5 5 0
0 0 0 0 0 0 0 5
0 0 0 0 0 0 0 5
0 0 0 0 5 5 5 0
0 0 0 0 0 0 0 0

Genome Constraints

Constraints are optionally applied to enforce shape/pattern
configurations

1

2,5 2

3

4

5

6,9

6

7 8

9

10

11

12

13

14

1516

17

18

Sample puzzle evolved to maximize number of solution
steps. Unfortunate side-effect: Too many available moves

at each step. There are 18 available first moves. The
puzzle is too easy to solve.

Green: Stone can be placed
Blue: Stone cannot be placed

Regular Mirrored Rotational symmetry Pattern constraint

Sample evolved puzzles, after improving fitness function to minimize sum of available moves (a) for all solution steps:

ALGORITHM DETAILS

• Population size: 10
• Mutation operators:
 - mutate a random position in the genome
 - swap randomly selected positions
 - add random arrow
 - remove random arrow
 - add random stone
 - remove random stone
• No crossover
• Termination criteria: 5000 generations elapse

without improvement
• Fitness function runs solver algorithm to

determine number of steps in solution
• Factors in fitness function:
 - Minimize puzzle errors / violations
 - Maximize number of steps in solution
• User controls:
 - Target difficulty: {easy, medium, hard}
 - Lower bound on acceptable number of
 solution steps
 - Optional shape/pattern constraint
 - Optional on/off switch for symmetry

Easy
m=20
a=26

Medium
m=24
a=70

Hard
m=20
a=50

Medium
m=17
a=40

m: # of moves a: sum of all available moves for all steps

INTRODUCTION

• Puzzles are more interesting to play when fewer
available moves are present at each solution step.

• Algorithm produced great variety of puzzle
configurations.

• Production of symmetric and constraint-bound
puzzles was much faster after introducting
symmetry- and constraint-aware mutation
operators.

RESULTS / CONCLUSIONS FURTHER STUDY
• Solver selects moves greedily (easiest first). Investigate

effect of other selection modes.
• Identification of logical deductions the solver does not

yet implement. How would they affect fitness evaluation?
• Investigate other metrics:
 - Arrow density
 - Clustering
 - Balance among types of moves in the puzzle solution

Easy
m=37
a=298

